The chemical biology of DNA damage (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThe chemical biology of DNA damage / ed. by N.E.Geacintov, S.Broyde. - Weinheim: Wiley-VCH, 2010. - xxii, 449 p.: ill. - Incl. bibl. ref. - Ind.: p.439-469. - ISBN 978-3-527-32295-4
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors ......................................... XVII

Part One    Chemistry and Biology of DNA Lesions ................ 1

1  Introduction and Perspectives on the Chemistry and Biology
   of ONA Damage ................................................ 3
   Nicholas E. Geacintov and Suse Broyde
   1.1  Overview of the Field ................................... 3
   1.2  DNA Damage-A Constant Threat ............................ 4
   1.3  DNA Damage and Disease .................................. 5
        1.3.1  The Inflammatory Response ........................ 5
        1.3.2  Reactive Oxygen and Nitrogen Species ............. 5
        1.3.3  Early Recognition of Environmentally Related
               Cancers: Polycyclic Aromatic Hydrocarbons ........ 6
        1.3.4  Exposure to Environmental Cancer-Causing
               Substances ....................................... 6
        1.3.5  Anatoxins ........................................ 7
        1.3.6  Aristolochic Acid ................................ 7
        1.3.7  Estrogens ........................................ 8
   1.4  DNA Damage and Chemotherapeutic Applications ............ 8
   1.5  The Cellular DNA Damage Response (DDR) .................. 9
   1.6  Repair Mechanisms that Remove DNA Lesions .............. 10
        1.6.1  Repair of Single-and Double-Strand Breaks ....... 10
        1.6.2  Alkylating Agents ............................... 10
        1.6.3  Base Excision Repair ............................ 11
        1.6.4  Mismatch Excision Repair ........................ 11
        1.6.5  Nucleotide Excision Repair ...................... 11
        1.6.6  Translesion Bypass of Unrepaired Lesions by
               Specialized DNA Polymerases and RNA
               Polymerases ..................................... 12
   1.7  Relationships between the Chemical, Structural, and
        Biological Features of DNA Lesions ..................... 12
        Acknowledgements ....................................... 15
   References .................................................. 15

2  Chemistry of Inflammation and DNA Damage: Biological
   Impact of Reactive Nitrogen Species ......................... 21
   Michael S. DeMott and Peter C. Dedon
   2.1  Introduction ........................................... 21
   2.2  DNA Oxidation and Nitration ............................ 23
        2.2.1  Spectrum of Guanine Oxidation Products Caused
               by ONOO-, ONOOCO2-, and NO2 ..................... 23
        2.2.2  Base Oxidation Products as Biomarkers of
               Inflammation and Oxidative Stress ............... 25
        2.2.3  Charge Transfer as a Determinant of the
               Location of G Oxidation Products in DNA ......... 25
   2.3  DNA Deamination ........................................ 26
        2.3.1  Problem of Oxanine .............................. 29
        2.3.2  Analytical Methods and Artifacts ................ 29
   2.4  2'-Deoxyribose Oxidation ............................... 30
        2.4.1  Variation of 2'-Deoxyribose Oxidation
               Chemistry as a Function of the Oxidant .......... 34
   2.5  Indirect Base Damage Caused by RNS ..................... 35
        2.5.1  Malondialdehyde and Related Adducts ............. 37
   2.6  Conclusions ............................................ 38
        Acknowledgements ....................................... 38
        References ............................................. 38

3  Oxidatively Generated Damage to Isolated and Cellular DNA ... 53
   Jean Cadet, Thierry Douki, and Jean-Luc Ravanat
   3.1  Introduction ........................................... 53
        3.1.1  Overview and Summary ............................ 53
        3.1.2  Overview of Oxidatively Generated DNA Damage .... 53
   3.2  Single Base Damage ..................................... 55
        3.2.1  Singlet Oxygen Oxidation of Guanine ............. 55
        3.2.2  Hydroxyl Radical Reactions ...................... 58
               3.2.2.1  Thymine ................................ 58
               3.2.2.2  Guanine ................................ 60
               3.2.2.3  Adenine ................................ 62
        3.2.3  One-Electron Oxidation of Nucleobases ........... 63
        3.2.4  HOC1 Acid-Mediated Halogenation of Pyrimidine
               and Purine Bases ................................ 65
   3.3  Tandem Base Lesions .................................... 66
   3.4  Hydroxyl Radical-Mediated 2-Deoxyribose Oxidation
        Reactions .............................................. 67
        3.4.1  Hydrogen Abstraction at C4': Formation of
               Cytosine Adducts ................................ 67
        3.4.2  Hydrogen Atom Abstraction at C5': Formation of
               Purine 5',8-Cyclonucleosides .................... 68
   3.5  Secondary Oxidation Reactions of Bases ................. 70
   3.6  Conclusions and Perspectives ........................... 71
   Acknowledgements ............................................ 71
   References .................................................. 72

4  Role of Free Radical Reactions in the Formation of DNA
   Damage ...................................................... 81
   Vladimir Shafirovich and Nicholas E. Geacintov
   4.1  Introduction ........................................... 81
   4.2  Importance of Free Radical Reactions with DNA .......... 82
        4.2.1  Free Radical Mechanisms: General
               Considerations .................................. 82
        4.2.2  Types of Free Radicals and their Reactions
               with Nucleic Acids .............................. 83
        4.2.3  Methods for Studying Free Radical Reactions:
               Laser Flash Photolysis .......................... 84
        4.2.4  Types of Radical Reactions and Kinetics ......... 85
        4.2.5  Examples of DNA Radical Reactions ............... 86
        4.2.6  Lifetimes of Free Radicals and Environmental
               Considerations .................................. 88
        4.2.7  Reactions of Free Radicals ...................... 89
   4.3  Mechanisms of Product Formation ........................ 91
        4.3.1  Reactions of G(-H)'Radicals with Nucleophiles ... 91
        4.3.2  Combinations of G(-H)'and Oxyl Radicals ......... 93
        4.3.3  Oxidation of 8-oxoG ............................. 97
   4.4  Biological Implications ................................ 99
   Acknowledgements ........................................... 100
   References ................................................. 101

5  DNA Damage Caused by Endogenously Generated Products of
   Oxidative Stress ........................................... 105
   Charles G. Knutson and Lawrence J. Marnett
   5.1  Lipid Peroxidation .................................... 105
   5.2  2'-Deoxyribose Peroxidation ........................... 107
   5.3  Reactions of MDA and P-Substituted Acroleins with
        DNA Bases ............................................. 109
   5.4  Stability of M1dG: Hydrolytic Ring-Opening and
        Reaction with Nucleophiles ............................ 112
   5.5  Propano Adducts ....................................... 114
   5.6  Etheno Adducts ........................................ 114
   5.7  Mutagenicity of Peroxidation-Derived Adducts .......... 117
   5.8  Repair of DNA Damage .................................. 121
   5.9  Assessment of DNA Damage .............................. 123
   5.10 Conclusions ........................................... 126
   Acknowledgements ........................................... 126
   References ................................................. 126

6  Polycyclic Aromatic Hydrocarbons: Multiple Metabolic
   Pathways and the DNA Lesions Formed ........................ 131
   Trevor M. Penning
   6.1  Introduction .......................................... 131
   6.2  Radical Cation Pathway ................................ 134
        6.2.1  Metabolic Activation of PAHs ................... 134
        6.2.2  Radical Cation DNA Adducts ..................... 135
        6.2.3  Limitations of the Radical Cation Pathway ...... 136
   6.3  Diol Epoxides ......................................... 137
        6.3.1  Metabolic Activation of PAHs ................... 137
        6.3.2  Diol Epoxide-DNA Adducts ....................... 138
        6.3.3  Limitations of the Diol Epoxide Pathway ........ 140
   6.4  PAH o-Quinones ........................................ 141
        6.4.1  Metabolic Activation of PAH trans-
               Dihydrodiols by AKRs ........................... 141
        6.4.2  PAH o-Quinone-Derived DNA Adducts .............. 142
               6.4.2.1  Covalent PAH o-Quinone-DNA Adducts .... 142
               6.4.2.2  Oxidative DNA Lesions from PAH
                        o-Quinones ............................ 144
        6.4.3  Limitations of the PAH o-Quinone Pathway ....... 146
   6.5  Future Directions ..................................... 147
   Acknowledgements ........................................... 148
   References ................................................. 148

7  Aromatic Amines and Heterocyclic Aromatic Amines: From
   Tobacco Smoke to Food Mutagens ............................. 157
   Robert J. Turesky
   7.1  Introduction .......................................... 157
   7.2  Exposure and Cancer Epidemiology ...................... 157
   7.3  Enzymes of Metabolic Activation and Genetic
        Polymorphisms ......................................... 159
   7.4  Reactivity of N-Hydroxy-AAs and N-Hydroxy-HAAs with
        DNA ................................................... 161
   7.5  Syntheses of AA-DNA and HAA-DNA Adducts ............... 162
   7.6  Biological Effects of AA-DNA and HAA-DNA Adducts ...... 162
   7.7  Bacterial Mutagenesis ................................. 164
   7.8  Mammalian Mutagenesis ................................. 165
   7.9  Mutagenesis in Transgenic Rodents ..................... 166
   7.10 Genetic Alterations in Oncogenes and Tumor
        Suppressor Genes ...................................... 167
   7.11 AA-DNA and HAA-DNA Adduct Formation in Experimental
        Animals and Methods of Detection ...................... 168
   7.12 AA-DNA and HAA-DNA Adduct Formation in Humans ......... 171
   7.13 Future Directions ..................................... 173
   Acknowledgements ........................................... 173
   References ................................................. 173

8  Cenotoxic Estrogen Pathway: Endogenous and Equine
   Estrogen Hormone Replacement Therapy ....................... 185
   Judy L. Bolton and Gregory R.J. Thatcher
   8.1  Risks of Estrogen Exposure ............................ 185
   8.2  Mechanisms of Estrogen Carcinogenesis ................. 187
        8.2.1  Hormonal Mechanism ............................. 187
        8.2.2  Chemical Mechanism ............................. 188
               8.2.2.1  Oxidative DNA Damage .................. 188
               8.2.2.2  DNA Adducts ........................... 189
               8.2.2.3  Protection against DNA Damage ......... 192
   8.3  Estrogen Receptor as a Trojan Horse (Combined
        Hormonal/Chemical Mechanism) .......................... 193
   8.4  Conclusions and Future Directions ..................... 194
        Acknowledgements ...................................... 194
   References ................................................. 194

Part Two    New Frontiers and Challenges: Understanding
            Structure-Function Relationships and Biological
            Activity .......................................... 201

9  Interstrand DNA Cross-Linking l,N2-Deoxyguanosine Adducts
   Derived from α,β-Unsaturated Aldehydes: Structure-
   Function Relationships ..................................... 203
   Michael P. Stone, Hai Huang, Young-Jin Cho, Hye-Young
   Kim, Ivan D. Kozekov, Albena Kozekova, Hao Wang, Irina
   G. Minko, R. Stephen Lloyd, Thomas M. Harris, and Carmelo
   J. Rizzo
   9.1  Introduction .......................................... 203
   9.2  Interstrand Cross-Linking Chemistry of the γ-OH-PdG
        Adduct (9) ............................................ 205
   9.3  Interstrand Cross-Linking by the α-CH3-γ-OH-PdG
        Adducts Derived from Crotonaldehyde ................... 207
   9.4  Interstrand Cross-Linking by 4-HNE .................... 207
   9.5  Carbinolamine Cross-Links Maintain Watson-Crick
        Base-Pairing .......................................... 209
   9.6  Role of DNA Sequence .................................. 210
   9.7  Role of Stereochemistry in Modulating Cross-Linking ... 210
   9.8  Biological Significance ............................... 212
   9.9  Conclusions ........................................... 213
   Acknowledgements ........................................... 213
   References ................................................. 213

10 Structure-Function Characteristics of Aromatic Amine-DNA
   Adducts .................................................... 217
   Bongsup Cho
   10.1 Introduction .......................................... 217
   10.2 Major Conformational Motifs ........................... 219
        10.2.1 Fully Complementary DNA Duplexes ............... 219
        10.2.2 Other Sequence Contexts ........................ 220
   10.3 Conformational Heterogeneity .......................... 221
        10.3.1 Sequence Effects on the S/B Conformational
               Heterogeneity .................................. 222
        10.3.2 Conformational Dynamics of the S/B
               Heterogeneity .................................. 224
        10.3.3 Base Sequence Context and Mutagenesis .......... 224
        10.3.4 Dependence of Nucleotide Excision Repair by
               E. coli UvrABC Proteins on Adduct
               Conformation ................................... 225
        10.3.5 Conformational Heterogeneity in Translesion
               Synthesis ...................................... 227
        10.3.6 Sequence Effects on the Conformational
               Stability of SMIs .............................. 230
   10.4 Structures of DNA Lesion-DNA Polymerase Complexes ..... 231
   10.5 Conclusions ........................................... 232
   Acknowledgements ........................................... 233
   References ................................................. 233

11 Mechanisms of Base Excision Repair and Nucleotide
   Excision Repair ............................................ 239
   Orlando D. Schärer and Arthur J. Campbell
   11.1 General Features of Base Excision and Nucleotide
        Excision Repair ....................................... 239
   11.2 BER ................................................... 241
        11.2.1 BER Overview-Short-Patch and Long-Patch BER .... 241
        11.2.2 Lesion Recognition by DNA Glycosylases ......... 242
        11.2.3 Passing the Baton-Abasic Site Removal and
               Repair ......................................... 247
   11.3 NER ................................................... 248
        11.3.1 Subpathways of NER: Global Genome and
               Transcription-Coupled NER ...................... 248
        11.3.2 Damage Recognition in GG-NER ................... 248
        11.3.3 Damage Verification and Lesion Demarcation in
               NER ............................................ 251
        11.3.4 Dual-Incision and Repair Synthesis in NER ...... 252
        11.3.5 Damage Recognition in TC-NER ................... 252
   11.4 Conclusions ........................................... 254
   References ................................................. 254

12 Recognition and Removal of Bulky DNA Lesions by the
   Nucleotide Excision Repair System .......................... 261
   Yuqin Cai, Konstantin Kropachev, Marina Kolbanovskiy,
   Alexander Kolbanovskiy, Suse Broyde, Dinshaw J. Patel,
   and Nicholas E. Geacintov
   12.1 Introduction .......................................... 261
   12.2 Overview of Mammalian NER ............................. 261
   12.3 Prokaryotic NER ....................................... 263
   12.4 Recognition of Bulky Lesions by Mammalian NER
        Factors ............................................... 263
   12.5 Bipartite Model of Mammalian NER and the
        Multipartite Model of Lesion Recognition .............. 264
   12.6 DNA Lesions Derived from the Reactions of PAH Diol
        Epoxides with DNA are Excellent Substrates for
        Probing the Mechanisms of NER ......................... 265
   12.7 Multidisciplinary Approach Towards Investigating
        Structure-Function Relationships in the NER of Bulky
        PAH-DNA Adducts ....................................... 268
   12.8 Dependence of DNA Adduct Conformations and NER on
        PAH Topology and Stereochemistry ...................... 269
        12.8.1 Guanine B[α]P Adducts (Figure 12.3a): Minor
               Groove and Base-Displaced/Intercalative
               Conformations .................................. 270
        12.8.2 Bay Region B[α]P-N6-Adenine Adducts (Figure
               12.3b): Distorting Intercalative Insertions
               from the Major Groove .......................... 271
        12.8.3 Fjord Region PAH N6-Adenine Adducts (Figure
               12.3c and d): Minimally Distorting
               Intercalation from the Major Groove ............ 272
        12.8.4 Dependence of NER Efficiencies on the
               Conformations of the Bay Region B[α]P-N2-dG
               Adducts ........................................ 272
        12.8.5 NER Efficiencies: Bay and Fjord Region PAH
               Diol Epoxide-N6-dA Adducts ..................... 278
        12.8.6 Why the trans-anti-B[c]Ph-N6-dA and Related
               Fjord Region N6-dA Adducts do not Destabilize
               DNA and are Resistant to NER ................... 280
   12.9 Dependence of NER of the 10S (+)-trans-anti-
        B[α]P-N2-dG Adduct on Base Sequence Context ........... 280
        12.9.1 Structural Characteristics of the Identical
               10S (+)-trans-anti-B[α]P-N2-dG Adduct in
               Different Sequence Contexts .................... 281
               12.9.1.1 CG*C and TG*T Sequences ............... 282
               12.9.1.2 G6*G7, G6G7*, and 16G7* Sequences ..... 282
        12.9.2 Hierarchies of Mammalian NER Recognition
               Signals ........................................ 286
   12.10 Conclusions .......................................... 287
   Acknowledgements ........................................... 289
   References ................................................. 289

13 Impact of Chemical Adducts on Translesion Synthesis in
   Replicative and Bypass DNA Polymerases: From Structure to
   Function ................................................... 299
   Robert L. Eoff, Martin Egli, and F. Peter Guengerich
   13.1 Introduction .......................................... 299
   13.2 Bypass of Abasic Sites ................................ 302
   13.3 Lesions Generated by Oxidative Damage to DNA .......... 305
   13.4 Exocyclic DNA Adduct Bypass ........................... 308
   13.5 Alkylated DNA ......................................... 310
   13.6 Polycyclic Aromatic Hydrocarbons and the Effect of
        Adduct Size upon Polymerase Catalysis ................. 313
   13.7 Cyclobutane Pyrimidine Dimers and UV Photoproducts .... 316
   13.8 Inter-and Intrastrand DNA Cross-Links ................. 316
   13.9 Conclusions ........................................... 318
   References ................................................. 319

14 Elucidating Structure-Function Relationships in Bulky DNA
   Lesions: From Solution Structures to Polymerases ........... 331
   Suse Broyde, Lihua Wang, Dinshaw J. Patel, and Nicholas
   E. Geacintov
   14.1 Introduction .......................................... 331
   14.2 Benzo[α]pyrene-Derived DNA Lesions as a Useful
        Model ................................................. 331
   14.3 Computational Elucidation of the Structural
        Properties of B[α]P-Derived DNA Lesions in Solution ... 333
   14.4 DNA Polymerase Structure-Function Relationships
        Elucidated with B[α]P-Derived Lesions ................. 335
   14.5 Mechanism of the Nucleotidyl Transfer Reaction ........ 343
   14.6 Conclusions and Future Perspectives ................... 345
   Acknowledgements ........................................... 345
   References ................................................. 346

15 Translesion Synthesis and Mutagenic Pathways in
   Escherichia coli Cells ..................................... 353
   Sushil Chandani and Edward L. Loechler
   15.1 Introduction .......................................... 353
   15.2 Mutagenesis in E. coli has Illuminated Our
        Understanding of Mutagenesis in General ............... 354
   15.3 Why Does E. coli have Three Translesion Synthesis
        DNA Polymerases? ...................................... 356
   15.4 Overview of the Steps Leading to Translesion
        Synthesis ............................................. 358
   15.5 Case Studies: AAF-C8-dG and N2-dG Adducts, Such as
        +BP ................................................... 360
   15.6 Structure-Function Analysis of Y-Family Pols IV and
        V of E. coli .......................................... 362
        15.6.1 Structural Basis for a Large versus Small
               Chimney Opening ................................ 366
        15.6.2 Roof-Amino Acids and Roof-Neighbor-Ammo
               Acids .......................................... 368
        15.6.3 Interconnected Architecture of the Chimney
               and Roof Regions ............................... 368
        15.6.4 dCTP Insertion by Pol IV ....................... 369
        15.6.5 How Does UmuC(V) Insert dATP? .................. 370
        15.6.6 A Cautionary Note about Dpo4 ................... 371
        15.6.7 Why is Pol IV Efficient at Extension with
               -BP, but Inefficient with +BP? ................. 372
   15.7 Y-Family DNA Polymerase Mechanistic Steps ............. 373
   15.8 Structure of B-Family Pol II of E. coli ............... 373
   References ................................................. 374

16 Insight into the Molecular Mechanism of Translesion DNA
   Synthesis in Human Cells using Probes with Chemically
   Defined DNA Lesions ........................................ 381
   Zvi Livneh
   16.1 Introduction .......................................... 381
   16.2 Overview of TLS ....................................... 382
   16.3 Plasmid Model Systems with Defined Lesions for
        Studying TLS .......................................... 384
   16.4 Gap-Lesion Plasmid Assay for Mammalian TLS ............ 384
   16.5 Some Lesions are Bypassed Most Effectively and Most
        Accurately by Specific Cognate TLS DNA Polymerases .... 387
   16.6 Pivotal Role for Pol ζ in TLS Across a Wide Variety
        of DNA Lesions ........................................ 388
   16.7 Knocking-Down the Expression of TLS Polymerases
        using Small Interfering RNA Provides a useful Tool
        for the Analysis of TLS using the Gapped Plasmid
        Assay ................................................. 388
   16.8 Evidence that TLS Occurs by Two-Polymerase
        Mechanisms, in Combinations that Determine the
        Accuracy of the Process ............................... 391
   16.9 Conclusions ........................................... 393
   Acknowledgements ........................................... 393
   References ................................................. 394

17 DNA Damage and Transcription Elongation: Consequences and
   RNA Integrity .............................................. 399
   Kristian Dreij, John A. Burns, Alexandra Dimitri, Lana
   Nirenstein, Taissia Noujnykh, and David A. Scicchitano
   17.1 Introduction .......................................... 399
   17.2 DNA Repair ............................................ 400
   17.3 Transcription Elongation and DNA Damage ............... 402
   17.4 RNA Polymerases: A Brief Overview ..................... 402
   17.5 RNA Polymerase Elongation Past DNA Damage ............. 407
        17.5.1 Abasic Sites, Single-Strand Nicks, and Gaps .... 407
        17.5.2 Oxidative DNA Damage ........................... 408
        17.5.3 Alkylated Bases in DNA ......................... 412
        17.5.4 Intrastrand and Interstrand DNA Cross-links .... 414
        17.5.5 "Bulky" DNA Adducts ............................ 416
   17.6 Conclusions ........................................... 421
   Acknowledgements ........................................... 428
   References ................................................. 429

Index ......................................................... 439


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:48 2019. Размер: 29,804 bytes.
Посещение N 2067 c 21.12.2010