Preface ........................................................ XV
List of Contributors ......................................... XVII
Volume 2
14 Amphiphilic Poly(Oxyalkylene)-Amines Interacting with
Layered Clays: Intercalation, Exfoliation, and New
Applications ............................................... 459
Jiang-Jen Lin, Ying-Nan Chan, and Wen-Hsin Chang
14.1 Introduction ......................................... 459
14.2 Chemical Structures of Clays and Organic-Salt
Modifications ........................................ 460
14.2.1 Natural Clays and Synthetic Layered-Double-
Hydroxide (LDH) .............................. 460
14.2.2 Low-Molecular-Weight Intercalating Agents
and X-Ray Diffraction d- Spacing ............. 461
14.3 Poly(Oxyalkylene)-Polyamine Salts as Intercalating
Agents, and Their Reaction Profiles .................. 462
14.3.1 Poly(Oxyalkylene)-Polyamine Salts as
Intercalating Agents ......................... 462
14.3.2 Critical Conformational Change in
Confinement During the Intercalating
Profile ...................................... 464
14.3.3 Correlation between MMT d-Spacing and
Intercalated Organics ........................ 466
14.4 Amphiphilic Copolymers as Intercalating Agents ....... 466
14.4.1 Various Structures of the Amphiphilic
Copolymers ................................... 466
14.4.2 Colloidal Properties ......................... 469
14.5 New Intercalation Mechanism Other than the Ionic-
Exchange Reaction .................................... 469
14.5.1 Amidoacid and Carboxylic Acid Chelating ...... 469
14.5.2 Intercalation Involving Intermolecular
Hydrogen Bonding ............................. 470
14.6 Self-Assembling Properties of Organoclays ............ 471
14.7 Exfoliation Mechanism and the Isolation of Random
Silicate Platelets ................................... 472
14.7.1 Thermodynamically Favored Exfoliation of
Na+-MMT by the PP-POP Copolymers ............. 472
14.7.2 Zigzag Mechanism for Exfoliating Na+-MMT ..... 473
14.8 Isolation of the Randomized Silicate Platelets in
Water ................................................ 473
14.9 Emerging Applications in Biomedical Research ......... 475
14.10 Conclusions .......................................... 477
References ................................................. 478
15 Mesoporous Alumina: Synthesis, Characterization, and
Catalysis .................................................. 481
Tsunetake Seki and Makoto Onaka
15.1 I ntroduction ........................................ 481
15.2 Synthesis of Mesoporous Alumina ...................... 482
15.2.1 Experimental Techniques ...................... 482
15.2.1.1 Synthesis .......................... 482
15.2.1.2 Characterization ................... 484
15.2.2 Examples of Synthesis ........................ 485
15.2.2.1 Neutral Surfactant Templating ...... 486
15.2.2.2 Anionic Surfactant Templating ...... 492
15.2.2.3 Cationic Surfactant Templating ..... 495
15.2.2.4 Nonsurfactant Templating ........... 498
15.3 Mesoporous Alumina in Heterogeneous Catalysis ........ 500
15.3.1 Base-Catalyzed Reactions ..................... 508
15.3.2 Epoxidation .................................. 509
15.3.3 Hydrodechlorination .......................... 510
15.3.4 Hydrodesulfurization ......................... 512
15.3.5 Olefin Metathesis ............................ 513
15.3.6 Oxidative Dehydrogenation .................... 517
15.3.7 Oxidative Methanol Steam Reforming ........... 518
15.4 Conclusions and Outlook .............................. 519
References ........................................... 519
16 Nanoceramics for Medical Applications ...................... 523
Besim Ben-Nissan and Andy H. Choi
16.1 Introduction ......................................... 523
16.2 Tissue Engineering and Regeneration .................. 527
16.2.1 Scaffolds .................................... 527
16.2.2 Liposomes .................................... 531
16.3 Nanohydroxyapatite Powders for Medical
Applications ......................................... 532
16.4 Nanocoatings and Surface Modifications ............... 535
16.4.1 Calcium Phosphate Coatings ................... 535
16.4.2 Sol-Gel Nanohydroxyapatite and Nanocoated
Coralline Apatite ............................ 538
16.4.3 Surface Modifications ........................ 540
16.5 Simulated Body Fluids ................................ 541
16.6 Nano- and Macrobioceramics for Drug Delivery and
Radiotherapy ......................................... 546
16.6.1 Nanobioceramics for Drug Delivery ............ 546
16.6.2 Microbioceramics for Drug Delivery ........... 548
16.6.3 Microbioceramics for Radiotherapy ............ 549
16.7 Nanotoxicology and Nanodiagnostics ................... 551
References ................................................. 552
17 Self-healing of Surface Cracks in Structural Ceramics ...... 555
Wataru Nakao, Koji Takahashi, and Kotoji Ando
17.1 Introduction ......................................... 555
17.2 Fracture Manner of Ceramics .......................... 555
17.3 History .............................................. 557
17.4 Mechanism ............................................ 559
17.5 Composition and Structure ............................ 562
17.5.1 Composition .................................. 562
17.5.2 SiC Figuration ............................... 563
17.5.3 Matrix ....................................... 566
17.6 Valid Conditions ..................................... 567
17.6.1 Atmosphere ................................... 567
17.6.2 Temperature .................................. 568
17.6.3 Stress ....................................... 571
17.7 Crack-healing Effect ................................. 573
17.7.1 Crack-healing Effects on Fracture
Probability .................................. 573
17.7.2 Fatigue Strength ............................. 575
17.7.3 Crack-healing Effects on Machining
Efficiency ................................... 577
17.8 New Structural Integrity Method ...................... 579
17.8.1 Outline ...................................... 579
17.8.2 Theory ....................................... 580
17.8.3 Temperature Dependence of the Minimum
Fracture Stress Guaranteed ................... 582
17.9 Advanced Self-crack Healing Ceramics ................. 585
17.9.1 Multicomposite ............................... 585
17.9.2 SiC Nanoparticle Composites .................. 587
17.10 Availability to Structural Components of the High
Temperature Gas Turbine .............................. 588
References ................................................. 590
18 Ecological Toxicology of Engineered Carbon Nanoparticles ... 595
Aaron P. Roberts and Ryan R. Otter
18.1 Introduction ......................................... 595
18.2 Fate and Exposure .................................... 596
18.2.1 General ...................................... 596
18.2.2 Stability in Aquatic Systems ................. 596
18.2.3 Bioavailability and Uptake ................... 598
18.2.4 Tissue Distribution .......................... 600
18.2.5 Food Web ..................................... 600
18.2.6 Effects on the Uptake of Other
Contaminants ................................. 602
18.3 Effects .............................................. 602
18.3.1 General ...................................... 602
18.3.2 Oxidative Stress and Nanoparticles ........... 602
18.3.3 Effects on Specific Tissues .................. 606
18.3.3.1 Brain .............................. 606
18.3.3.2 Gills .............................. 607
18.3.3.3 Liver .............................. 607
18.3.3.4 Gut ................................ 60S
18.3.4 Developmental Effects ........................ 608
18.4 Summary .............................................. 609
References ................................................. 610
19 Carbon Nanotubes as Adsorbents for the Removal of Surface
Water Contaminants ......................................... 615
Jose E. Herrera and Jing Cheng
19.1 Introduction ......................................... 615
19.2 Structure and Synthesis of Carbon Nanotubes .......... 616
19.3 Properties of Carbon Nanotubes ....................... 620
19.3.1 Mechanical, Thermal, Electrical, and
Optical Properties of Carbon Nanotubes ....... 620
19.3.2 Adsorption-Related Properties of Carbon
Nanotubes .................................... 620
19.4 Carbon Nanotubes as Adsorbents ....................... 622
19.4.1 Adsorption of Heavy Metal Ions ............... 624
19.4.1.1 Adsorption of Lead (II) ............ 624
19.4.1.2 Adsorption of Chromium (VI) ........ 626
19.4.1.3 Adsorption of Cadmium (II) ......... 628
19.4.1.4 Adsorption of Copper (II) .......... 629
19.4.1.5 Adsorption of Zinc (II) ............ 630
19.4.1.6 Adsorption of Nickel (II) .......... 632
19.4.1.7 Competitive Adsorption of Heavy
Metals Ions ........................ 633
19.4.2 Adsorption of Other Inorganic Elements ....... 634
19.4.2.1 Adsorption of Fluoride ............. 635
19.4.2.2 Adsorption of Arsenic .............. 637
19.4.2.3 Adsorption of Americium-243
(III) .............................. 638
19.4.3 Adsorption of Organic Compounds .............. 639
19.4.3.1 Adsorption of Dioxins .............. 639
19.4.3.2 Adsorption of 1,2-
Dichlorobenzene .................... 640
19.4.3.3 Adsorption of Trihalomethanes ...... 642
19.4.3.4 Adsorption of Polyaromatic
Compounds .......................... 643
19.5 Summary of the Results, and Conclusions .............. 644
References ................................................. 647
20 Molecular Imprinting with Nanomaterials .................... 651
Kevin Flavin and Marina Resmini
20.1 Introduction ......................................... 651
20.1.1 Molecular Imprinting: The Concept ............ 652
20.1.1.1 History of Molecular Imprinting .... 653
20.1.1.2 Covalent Imprinting ................ 654
20.1.1.3 Noncovalent Imprinting ............. 654
20.1.1.4 Alternative Molecular Imprinting
Approaches ......................... 656
20.1.2 Towards Imprinting with Nanomaterials ........ 656
20.2 Molecular Imprinting in Nanoparticles ................ 657
20.2.1 Emulsion Polymerization ...................... 657
20.2.1.1 Core-Shell Emulsion
Polymerization ..................... 657
20.2.1.2 Mini-Emulsion Polymerization ....... 660
20.2.2 Precipitation Polymerization ................. 661
20.2.2.1 Applications and Variations ........ 662
20.2.2.2 Microgel/Nanogel Polymerization .... 664
20.2.3 Silica Nanoparticles ......................... 665
20.2.4 Molecularly Imprinted Nanoparticles:
Miscellaneous ................................ 667
20.3 Molecular Imprinting with Diverse Nanomaterials ...... 668
20.3.1 Nanowires, Nanotubes, and Nanofibers ......... 668
20.3.2 Quantum Dots ................................. 669
20.3.3 Fullerene .................................... 670
20.3.4 Dendrimers ................................... 671
20.4 Conclusions and Future Prospects ..................... 672
References ........................................... 673
21 Near-Field Raman Imaging of Nanostructures and Devices ..... 677
Ze Xiang Shen, Johnson Kasim, and Ting Yu
21.1 Introduction ......................................... 677
21.2 Near-Field Raman Imaging Techniques .................. 678
21.3 Visualization of Si—С Covalent Bonding of Single
Carbon Nanotubes Grown on Silicon Substrate .......... 682
21.4 Near-Field Scanning Raman Microscopy Using TERS ...... 686
21.5 Near-Field Raman Imaging Using Optically Trapped
Dielectric Microsphere ............................... 688
21.6 Conclusions .......................................... 695
References ................................................. 695
22 Fullerene-Rich Nanostructures .............................. 699
Fernando Langa and Jean-François Nierengarten
22.1 Introduction ......................................... 699
22.2 Fullerene-Rich Dendritic Branches .................... 700
22.3 Photoelectrochemical Properties of Fullerodendrons
and Their Nanoclusters ............................... 704
22.4 Fullerene-Rich Dendrimers ............................ 708
22.5 Conclusions .......................................... 712
Acknowledgments ............................................ 712
References ................................................. 713
23 Interactions of Carbon Nanotubes with Biomolecules:
Advances and Challenges .................................... 715
Dhriti Nepal and Kurt E. Ceckeler
23.1 Introduction ......................................... 715
23.2 Structure and Properties ............................. 715
23.3 Debundalization ...................................... 716
23.4 Noncovalent Functionalization ........................ 718
23.5 Dispersion of Carbon Nanotubes in Biopolymers ........ 719
23.6 Interaction of DNA with Carbon Nanotubes ............. 720
23.7 Interaction of Proteins with Carbon Nanotubes ........ 723
23.8 Technology Development Based on Biopolymer-Carbon
Nanotube Products .................................... 729
23.8.1 Diameter- or Chirality-Based Separation of
Carbon Nanotubes ............................. 734
23.8.2 Fibers ....................................... 736
23.8.3 Sensors ...................................... 737
23.8.4 Therapeutic Agents ........................... 738
23.9 Conclusions .......................................... 738
Acknowledgments ............................................ 738
References ................................................. 739
24 Nanoparticle-Cored Dendrimers and Hyperbranched Polymers:
Synthesis, Properties, and Applications .................... 743
Young-Seok Shon
24.1 Introduction ......................................... 743
24.2 Synthesis of Nanoparticle-Cored Dendrimers via
the Direct Method, and their Properties and
Application .......................................... 745
24.3 Synthesis of Nanoparticle-Cored Dendrimers by
Ligand Exchange Reaction, and their Properties and
Applications ........................................ 753
24.4 Synthesis of Nanoparticle-Cored Dendrimers by
Dendritic Functionalization, and their Properties
and Applications .................................... 758
24.4.1 Nanoparticle-Cored Dendrimers by the
Convergent Approach ......................... 759
24.4.2 Nanoparticle-Cored Dendrimers by
the Divergent Approach ...................... 761
24.5 Synthesis of Nanoparticle-Cored Hyperbranched
Polymers by Grafting on Nanoparticles ............... 763
24.6 Conclusions and Outlook ............................. 764
Acknowledgment ............................................ 764
References ................................................ 765
25 Concepts in Self-Assembly ................................. 767
Jeremy J. Ramsden
25.1 Introduction ........................................ 767
25.2 Theoretical Approaches to Self-Organization ......... 770
25.2.1 Thermodynamics of Self-Organization ......... 770
25.2.2 The "Goodness" of the Organization .......... 772
25.2.3 Programmable Self-Assembly .................. 773
25.3 Examples of Self-Assembly ........................... 774
25.3.1 The Addition of Particles to the Solid /
Liquid Interface ............................ 774
25.3.1.1 Numerically Simulating RSA ........ 776
25.3.2 Self-Assembled Monolayers (SAMs) ............ 776
25.3.3 Quantum Dots (QDs) .......................... 778
25.3.4 Crystallization and Supramolecular
Chemistry ................................... 779
25.3.5 Biological Examples ......................... 780
25.3.6 DNA ......................................... 781
25.3.7 RNA and Proteins ............................ 781
25.4 Self-Assembly as a Manufacturing Process ............ 783
25.5 Useful Ideas ........................................ 784
25.5.1 Weak Competing Interactions ................. 784
25.5.2 Percolation ................................. 784
25.5.3 Cooperativity ............................... 785
25.5.4 Water Structure ............................. 786
25.6 Conclusions and Challenges .......................... 787
References .......................................... 787
26 Nanostructured Organogels via Molecular Self-Assembly ..... 791
Arjun S. Krishnan, Kristen E. Roskov, and Richard J.
Spontak
26.1 Introduction ........................................ 791
26.2 Block Copolymer Gels ................................ 793
26.2.1 Concentration Effects ....................... 793
26.2.2 Temperature Effects ......................... 801
26.2.3 Microdomain Alignment ....................... 804
26.2.4 Tensile Deformation ......................... 806
26.2.5 Network Modifiers ........................... 808
26.2.5.1 Inorganic Nanofillers ............. 808
26.2.5.2 Polymeric Modifiers ............... 810
26.2.6 Nonequilibrium Mesogels ..................... 812
26.2.7 Special Cases ............................... 814
26.2.7.1 Liquid Crystals ................... 814
26.2.7.2 Ionic Liquids ..................... 815
26.2.73 Multiblock Copolymers ....................... 815
26.2.7.4 Cosolvent Systems ................. 816
26.3 Organic Gelator Networks ............................ 816
26.3.1 Hydrogen Bonding ............................ 818
26.3.1.1 Amides ............................ 819
26.3.1.2 Ureas ............................. 820
26.3.1.3 Sorbitols ......................... 820
26.3.1.4 Miscellaneous LMOG Classes ........ 822
26.3.2 7I-7U Stacking .............................. 822
26.3.3 London Dispersion Forces .................... 824
26.3.4 Special Considerations ...................... 824
26.3.4.1 Biologically Inspired Gelators .... 824
26.3.4.2 Isothermal Gelation ............... 825
26.3.4.3 Solvent Effects ................... 826
26.4 Conclusions ......................................... 827
Acknowledgments ........................................... 828
References ................................................ 828
27 Self-assembly of Linear Polypeptide-based Block
Copolymers ................................................ 835
Sébastien Lecommandoux, Harm-Anton Klok, and Helmut
Schlaad
27.1 Introduction ........................................ 835
27.2 Solution Self-assembly of Polypeptide-based Block
Copolymers .......................................... 837
27.2.1 Aggregation of Polypeptide-based Block
Copolymers .................................. 837
27.2.1.1 Polypeptide Hybrid Block
Copolymers ........................ 837
27.2.1.2 Block Copolypeptides .............. 841
27.2.2 Polypeptide-based Hydrogels ................. 842
27.2.3 Organic/Inorganic Hybrid Structures ......... 842
27.3 Solid-state Structures of Polypeptide-based Block
Copolymers .......................................... 844
27.3.1 Diblock Copolymers .......................... 844
27.3.1.1 Polydiene-based Diblock
Copolymers ........................ 844
27.3.1.2 Polystyrene-based Diblock
Copolymers ........................ 845
27.3.1.3 Polyether-based Diblock
Copolymers ........................ 850
27.3.1.4 Polyester-based Diblock
Copolymers ........................ 851
27.3.1.5 Diblock Copolypeptides ............ 851
27.3.2 Triblock Copolymers ......................... 852
27.3.2.1 Polydiene-based Triblock
Copolymers ........................ 852
27.3.2.2 Polystyrene-based Triblock
Copolymers ........................ 856
27.3.2.3 Polysiloxane-based Triblock
Copolymers ........................ 857
27.3.2.4 Polyether-based Triblock
Copolymers ........................ 858
27.3.2.5 Miscellaneous ..................... 862
21.4 Summary and Outlook ................................. 864
References ................................................ 865
28 Structural DNA Nanotechnology: Information-Guided
Self-Assembly ............................................. 869
Yonggang Ke, Yan Liu, and Hao Yan
28.1 Introduction ........................................ 869
28.2 Periodic DNA Nanoarrays ............................. 871
28.3 Finite-Sized and Addressable DNA Nanoarrays ......... 872
28.4 DNA Polyhedron Cages ................................ 874
28.5 DNA Nanostructure-Directed Nanomaterial Assembly .... 876
28.6 Concluding Remarks .................................. 877
Acknowledgments ........................................... 878
References ................................................ 878
Index ........................................................ 881
|