Preface ........................................................ XV
List of Contributors ......................................... XVII
Volume 1
1 Phase-Selective Chemistry in Block Copolymer Systems ......... 1
Evan L. Schwartz and Christopher K. Ober
1.1 Block Copolymers as Useful Nanomaterials ................ 1
1.1.1 Introduction ..................................... 1
1.1.2 Self-Assembly of Block Copolymers ................ 3
1.1.3 Triblock Copolymers .............................. 4
1.1.4 Rod-Coil Block Copolymers ........................ 7
1.1.5 Micelle Formation ................................ 8
1.1.6 Synthesis of Block Copolymers Using Living
Polymerization Techniques ........................ 9
1.1.6.1 Anionic Polymerization ................. 10
1.1.6.2 Stable Free Radical Polymerizations .... 11
1.1.6.3 Reversible Addition-Fragmentation
Chain Transfer (RAFT) Polymerization ... 12
1.1.6.4 Atom Transfer Radical Polymerization ... 12
1.1.6.5 Ring-Opening Metathesis
Polymerization ......................... 13
1.1.6.6 Group Transfer Polymerization .......... 13
1.1.7 Post-Polymerization Modifications ............... 14
1.1.7.1 Active-Center Transformations .......... 14
1.1.7.2 Polymer-Analogous Reactions ............ 14
1.2 Block Copolymers as Lithographic Materials ............. 15
1.2.1 Introduction to Lithography ..................... 15
1.2.2 Block Copolymers as Nanolithographic
Templates ....................................... 17
1.2.2.1 Creation of Nanoporous Block
Copolymer Templates .................... 20
1.2.3 Multilevel Resist Strategies Using Block
Copolymers ...................................... 29
1.3 Nanoporous Monoliths Using Block Copolymers ............ 34
1.3.1 Structure Direction Using Block Copolymer
Scaffolds ....................................... 34
1.3.2 Nanopore Size Tunability ........................ 36
1.3.3 Functionalized Nanoporous Surfaces .............. 38
1.4 Photo-Crosslinkable Nano-Objects ....................... 41
1.5 Block Copolymers as Nanoreactors .................. 44
1.5.1 Polymer-Metal Solubility ........................ 44
1.5.2 Cluster Nucleation and Growth ................... 46
1.5.3 Block Copolymer Micelle Nanolithography ......... 47
1.6 Interface-Active Block Copolymers ...................... 48
1.6.1 Low-Energy Surfaces Using Fluorinated Block
Copolymers ...................................... 48
1.6.2 Patterning Surface Energies ..................... 49
1.6.3 Photoswitchable Surface Energies Using Block
Copolymers Containing Azobenzene ................ 51
1.6.4 Light-Active Azobenzene Block Copolymer
Vesicles as Drug Delivery Devices ............... 52
1.6.5 Azobenzene-Containing Block Copolymers as
Holographic Materials ........................... 52
1.7 Summary and Outlook .................................... 54
References ............................................. 60
2 Block Copolymer Nanofibers and Nanotubes .................... 67
Cuojun Liu
2.1 Introduction ........................................... 67
2.2 Preparation ............................................ 69
2.2.1 Nanofiber Preparation ........................... 69
2.2.2 Nanotube Preparation ............................ 72
2.3 Solution Properties .................................... 74
2.4 Chemical Reactions ..................................... 81
2.4.1 Backbone Modification ........................... 81
2.4.2 End Functionalization ........................... 85
2.5 Concluding Remarks ..................................... 87
Acknowledgements ....................................... 88
References ............................................. 88
3 Smart Nanoassemblies of Block Copolymers for Drug and
Gene Delivery ............................................... 91
Horacio Cabral and Kazunori Kataoka
3.1 Introduction ........................................... 91
3.2 Smart Nanoassemblies for Drug and Gene Delivery ........ 92
3.3 Endogenous Triggers .................................... 93
3.3.1 pH-Sensitive Nanoassemblies ..................... 93
3.3.1.1 Drug Delivery .......................... 93
3.3.1.2 Gene Delivery .......................... 96
3.3.2 Oxidation- and Reduction-Sensitive Polymeric
Nanoassemblies .................................. 99
3.3.3 Other Endogenous Triggers ...................... 101
3.4 External Stimuli ...................................... 102
3.4.1 Temperature .................................... 102
3.4.2 Light .......................................... 105
3.4.3 Ultrasound ..................................... 107
3.5 Future Perspectives ................................... 108
References ............................................ 109
4 A Comprehensive Approach to the Alignment and Ordering of
Block Copolymer Morphologies ............................... 111
Massimo Lazzari and Claudio De Rosa
4.1 Introduction .......................................... 111
4.1.1 Motivation ..................................... 111
4.1.2 Organization of the Chapter .................... 112
4.2 How to Help Phase Separation .......................... 113
4.3 Orientation by External Fields ........................ 336
4.3.1 Mechanical Flow Fields ......................... 117
4.3.2 Electric and Magnetic Fields ................... 118
4.3.3 Solvent Evaporation and Thermal Gradient ....... 122
4.4 Templated Self-Assembly on Nanopatterned Surfaces ..... 223
4.5 Epitaxy and Surface Interactions ...................... 126
4.5.1 Preferential Wetting and Homogeneous Surface
Interactions ................................... 126
4.5.2 Epitaxy ........................................ 128
4.5.3 Directional Crystallization .................... 130
4.5.4 Graphoepitaxy and Other Confining Geometries ... 135
4.5.5 Combination of Directional Crystallization
and Graphoepitaxy .............................. 138
4.5.6 Combination of Epitaxy and Directional
Crystallization ................................ 140
4.6 Summary and Outlook ................................... 149
Acknowledgments ....................................... 150
References ............................................ 150
5 Helical Polymer-Based Supramolecular Films ................. 159
Akihiro Ohira, Michiya Fujiki, and Masashi Kunitake
5.1 Introduction .......................................... 159
5.2 Helical Polymer-Based 1-D and 2-D Architectures ....... 161
5.2.1 Formation of Various 1-D Architectures of
Helical Polysilanes on Surfaces ................ 162
5.2.1.1 Direct Visualization of 1-D Rod,
Semi-Circle and Circle Structures by
AFM ................................... 162
5.2.1.2 Driving Force for the Formation of
1-D Architectures ..................... 165
5.2.2 Formation of Mesoscopic 2-D Hierarchical
Superhelical Assemblies ........................ 167
5.2.2.1 Direct Visualization of a Single
Polymer Chain ......................... 167
5.2.2.2 Formation of Superhelical Assemblies
by Homochiral Intermolecular
Interactions .......................... 169
5.2.3 Formation of 2-D Crystallization of
Poly(y-L-Glutamates) on Surfaces ............... 172
5.2.3.1 Direct Visualization of 2-D Self-
Organized Array by AFM ................ 173
5.2.3.2 Orientation in 2-D Self-Organized
Array ................................. 174
5.2.3.3 Intermolecular Weak van der Waals
Interactions in 2-D Self-Organized
Arrays ................................ 175
5.2.3.4 Comparison of Structures between a
2-D Self-Organized Array and 3-D
Bulk Phase ............................ 175
5.2.4 Summary of Helical Polymer-Based 1-D and 2-D
Architectures .................................. 176
5.3 Helical Polymer-Based Functional Films ................ 177
5.3.1 Chiroptical Memory and Switch in Helical
Polysilane Films ............................... 178
5.3.1.1 Memory with Re-Writable Mode and
Inversion "-1" and "+1" Switch ........ 178
5.3.1.2 Memory with Write-Once Read-Many
(WORM) Mode ........................... 182
5.3.1.3 On-Off "0" and "+1" Switch Based on
Helix-Coil Transition ................. 182
5.3.2 Chiroptical Transfer and Amplification in
Binary Helical Polysilane Films ................ 185
5.3.3 Summary of Helical Polymer-Based Functional
Films .......................................... 188
Acknowledgments ............................................ 189
References ................................................. 190
6 Synthesis of Inorganic Nanotubes ........................... 195
C.N.R. Rao and Achutharao Govindaraj
6.1 Introduction .......................................... 195
6.2 General Synthetic Strategies .......................... 196
6.3 Nanotubes of Metals and other Elemental Materials ..... 196
6.4 Metal Chalcogenide Nanotubes .......................... 206
6.5 Metal Oxide Nanotubes ................................. 214
6.5.1 SiO2 Nanotubes ................................. 214
6.5.2 TiO2 Nanotubes ................................. 216
6.5.3 ZnO, CdO, and A12O3 Nanotubes .................. 221
6.5.4 Nanotubes of Vanadium and Niobium Oxides ....... 225
6.5.5 Nanotubes of other Transition Metal Oxides ..... 228
6.5.6 Nanotubes of other Binary Oxides ............... 230
6.5.7 Nanotubes of Titanates and other Complex
Oxides ......................................... 233
6.6 Pnictide Nanotubes .................................... 235
6.7 Nanotubes of Carbides and other Materials ............. 240
6.8 Complex Inorganic Nanostructures Based on Nanotubes ... 240
6.9 Outlook ............................................... 241
Referecnes ................................................. 241
7 Cold Nanoparticles and Carbon Nanotubes: Precursors for
Novel Composite Materials .................................. 249
Thathan Premkumar and Kurt E. Ceckeler
7.1 Introduction .......................................... 249
7.2 Gold Nanoparticles .................................... 249
7.3 Carbon Nanotubes ...................................... 251
7.4 CNT-Metal Nanoparticle Composites ..................... 254
7.5 CNT-AuNP Composites ................................... 255
7.5.1 Filling of CNTs with AuNPs ..................... 255
7.5.2 Deposition of AuNPs Directly on the CNT
Surface ........................................ 256
7.5.3 Interaction Between Modified AuNPs and CNTs .... 267
7.5.3.1 Covalent Linkage ...................... 268
7.5.3.2 Supramolecular Interaction Between
AuNPs and CNTs ........................ 271
7.6 Applications ..................................... 288
7.7 Merits and Demerits of Synthetic Approaches ...... 289
7.8 Conclusions ...................................... 291
Acknowledgments ............................................ 292
References ................................................. 292
8 Recent Advances in Metal Nanoparticle-Attached
Electrodes ................................................. 297
Munetaka Oyama, Akrajas Ali Umar, and Jingdong Zhang
8.1 Introduction .......................................... 297
8.2 Seed-Mediated Growth Method for the Attachment and
Growth of AuNPs on ITO ................................ 298
8.3 Electrochemical Applications of AuNP-Attached ITO ..... 300
8.4 Improved Methods for Attachment and Growth of AuNPs
on ITO ................................................ 302
8.5 Attachment and Growth of AuNPs on Other Substrates .... 306
8.6 Attachment and Growth of Au Nanoplates on ITO ......... 308
8.7 Attachment and Growth of Silver Nanoparticles
(AgNPs) on ITO ........................................ 309
8.8 Attachment and Growth of Palladium Nanoparticles
PdNPs on ITO .......................................... 311
8.9 Attachment of Platinum Nanoparticles PtNPs on ITO
and GC ................................................ 312
8.10 Electrochemical Measurements of Biomolecules Using
AuNP/ ITO Electrodes .................................. 315
8.11 Nonlinear Optical Properties of Metal NP-Attached
ITO ................................................... 315
8.12 Concluding Remarks .................................... 316
References ................................................. 316
9 Mesoscale Radical Polymers: Bottom-Up Fabrication of
Electrodes in Organic Polymer Batteries .................... 319
Kenichi Oyaizu and Hiroyuki Nishide
9.1 Mesostructured Materials for Energy Storage Devices ... 319
9.2 Mesoscale Fabrication of Inorganic Electrode-Active
Materials ............................................. 322
9.3 Bottom-Up Strategy for Organic Electrode
Fabrication ........................................... 323
9.3.1 Conjugated Polymers for Electrode-Active
Materials ...................................... 323
9.3.2 Mesoscale Organic Radical Polymer Electrodes ... 324
9.4 Conclusions ........................................... 330
References ................................................. 330
10 Oxidation Catalysis by Nanoscale Cold, Silver, and
Copper ..................................................... 333
Zhi Li, Soorly С. Divakara, and Ryan M. Richards
10.1 Introduction .......................................... 333
10.2 Preparations .......................................... 334
10.2.1 Silver Nanocatalysts ........................... 335
10.2.2 Copper Nanocatalysts ........................... 335
10.2.3 Gold Nanocatalysts ............................. 335
10.3 Selective Oxidation of Carbon Monoxide (CO) ........... 337
10.3.1 Gold Catalysts ................................. 337
10.3.2 Silver Catalysts ............................... 342
10.3.3 Gold-Silver Alloy Catalysts .................... 342
10.3.4 Copper Catalysts ............................... 343
10.4 Epoxidation Reactions ................................. 344
10.4.1 Gold Catalysts ................................. 344
10.4.2 Silver Catalysts ............................... 346
10.5 Selective Oxidation of Hydrocarbons ................... 347
10.5.1 Gold Catalysts ................................. 349
10.5.2 Silver Catalysts ............................... 350
10.5.3 Copper Catalysts ............................... 350
10.6 Oxidation of Alcohols and Aldehydes ................... 350
10.6.1 Gold Catalysts ................................. 351
10.6.2 Silver Catalysts ............................... 351
10.7 Direct Synthesis of Hydrogen Peroxide ................. 353
10.8 Conclusions ........................................... 354
References ................................................. 355
11 Self-Assembling Nanoclusters Based on Tetrahalometallate
Anions: Electronic and Mechanical Behavior ................. 365
Ishenkumba A. Kahwa
11.1 Introduction .......................................... 365
11.2 Preparation of Key Compounds .......................... 366
11.3 Structure of the [(A(18C6))4(MX4)] [BX4]2 и Н20
Complexes ............................................. 367
11.4 Structure of the [(Na(15C5))4Br][TlBr4]3 Complex ....... 368
11.5 Spectroscopy of the Cubic F23 [(A(18C6))4(MX4)]
[BX4]2 • nH20 .......................................... 368
11.6 Unusual Luminescence Spectroscopy of Some Cubic
[(A(18C6))4(MnX4)] [TlCl4]2 • nH20 Compounds ........... 372
11.7 Luminescence Decay Dynamics and 18C6 Rotations ........ 374
11.8 Conclusions ........................................... 375
Acknowledgments ............................................ 377
References ................................................. 377
12 Optically Responsive Polymer Nanocomposites Containing
Organic Functional Chromophores and Metal Nanostructures ... 379
Andrea Pucci, Ciacomo Ruggeri, and Francesco Ciardelli
12.1 Introduction .......................................... 379
12.2 Organic Chromophores as the Dispersed Phase ........... 380
12.1 Nature of the Organic Dye ............................. 380
12.2.2 Polymeric Indicators to Mechanical Stress ...... 381
12.2.2.1 0ligo(p-Phenylene Vinylene) as
Luminescent Dyes ...................... 381
12.2.2.2 Bis(Benzoxazolyl) Stilbene as
a Luminescent Dye ..................... 383
12.2.2.3 Perylene Derivatives as Luminescent
Dyes .................................. 384
12.2.3 Polymeric Indicators to Thermal Stress ........ 385
12.2.3.1 0ligo(p-Phenylene Vinylene) as
Luminescent Dyes ...................... 385
12.2.3.2 Bis(Benzoxazolyl) Stilbene as
Luminescent Dye ....................... 387
12.2.3.3 Anthracene Triaryl Amine-Terminated
Diimide as Luminescent Dye ............ 388
12.3 Metal Nanostructures as the Dispersed Phase ........... 389
12.3.1 Optical Properties of Metal Nanoassemblies ..... 389
12.3.2 Nanocomposite-Based Indicators to Mechanical
Stress ......................................... 391
12.3.2.1 The Use of Metal Nanoparticles ....... 391
12.3.2.2 The Use of Metal Nanorods ............ 395
12.4 Conclusions ........................................... 397
Acknowledgments ............................................ 398
References ................................................. 398
13 Nanocomposites Based on Phyllosilicates: From
Petrochemicals to Renewable Thermoplastic Matrices ......... 403
Maria-Beatrice Coltelli, Serena Coiai, Simona Bronco, and
Elisa Passaglia
13.1 Introduction .......................................... 403
13.1.1 Structure of Phyllosilicates ................... 404
13.1.1.1 Clays ................................. 404
13.1.2 Morphology of Composites ....................... 408
13.1.3 Properties of Composites ....................... 411
13.2 Polyolefin-Based Nanocomposites ....................... 411
13.2.1 Overview of the Preparation Methods ............ 412
13.2.2 Organophilic Clay and Compatibilizer:
Interactions with the Polyolefin Matrix ........ 414
13.2.3 The One-Step Process ........................... 426
13.3 Poly(Ethylene Terephthalate)-Based Nanocomposites ..... 429
13.3.1 In Situ Polymerization ......................... 430
13.3.2 Intercalation in Solution ...................... 433
13.3.3 Intercalation in the Melt ...................... 434
13.4 Poly(Lactide) (PLA)-Based Nanocomposites .............. 439
13.4.1 Overview of Preparation Methods ................ 439
13.4.1.1 In Situ Polymerization ................ 439
13.4.1.2 Intercalation in Solution ............. 442
13.4.1.3 Intercalation in the Melt ............. 443
13.5 Conclusions ........................................... 447
Acknowledgments ............................................ 449
References ................................................. 450
|