Integrability (Berlin; Heidelberg, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIntegrability / ed. by A.V.Mikhailov. - Berlin; Heidelberg: Springer Verlag, 2009. - xiii, 339 p.: ill. - (Lecture notes in physics; 767). - Incl. bibl. ref. - Ind.: p.325-339. - ISBN 978-3-540-88110-0
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Introduction ................................................... 1
   A.V. Mikhailov
   References ................................................. 15

1  Symmetries of Differential Equations and the Problem of
   Integrability .............................................. 19
   A.V. Mikhailov and V.V. Sokolov   
   1.1  Introduction .......................................... 19
   1.2  Symmetries and First Integrals of Finite-Dimensional
        Dynamical Systems ..................................... 20
   1.3  Basic Concepts of the Symmetry Approach ............... 32
   1.4  Modifications and Generalizations ..................... 52
   1.5  Short Description of Solved Classification Problems
        and References ........................................ 73
   References ................................................. 85

2  Number Theory and the Symmetry Classification of 
   Integrable Systems ......................................... 89
   J.A. Sanders and J.P. Wang
   2.1  Introduction .......................................... 89
   2.2  The Symbolic Method ................................... 91
   2.3  An Implicit Function Theorem .......................... 96
   2.4  Symmetry-Integrable Evolution Equations ............... 98
   2.5  Evolution Systems with к Components .................. 105
   2.6  One Symmetry Does not Imply Integrability ............ 108
   2.7  Concluding Remarks, Open Problems and Further
        Development .......................................... 113
   2.8  Some Irreducibility Results by F. Beukers ............ 114
   2.9  The Filtered Lie Algebra Version of the Implicit 
        Function Theorem ..................................... 115
   References ................................................ 116

3  Four Lectures: Discretization and Integrability. 
   Discrete Spectral Symmetries .............................. 119
   S.P. Novikov
   3.1  Introduction ......................................... 119
   3.2  Continuous and Discrete Spectral Symmetries of ID 
        Systems and Spectral Theory of Operators. ID 
        Continuous Schrodinger Operator and Its Discrete
        Analogue ............................................. 120
   3.3  2D Schrodinger Operator. Discrete Spectral 
        Symmetries, Spectral Theory of the Selected Energy
        Level and Space/Lattice Discretization ............... 124
   3.4  Discretization of the 2D Schrodinger Operators and
        Laplace Transformations on the Square and 
        Equilateral Lattices ................................. 128
   3.5  2D Manifolds with the Colored Black-White 
        Triangulation. Integrable Systems on a Trivalent
        Tree ................................................. 133
   References ................................................ 137

4  Symmetries of Spectral Problems ........................... 139
   A. Shabat
   4.1  Lie-Type Symmetries .................................. 139
   4.2  Discrete Symmetries .................................. 153
   References ................................................ 172

5  Normal Form and Solitons .................................. 175
   Y. Hiraoka and Y. Kodama
   5.1  Introduction ......................................... 175
   5.2  Perturbed KdV Equation ............................... 178
   5.3  Conserved Quantities and N-Soliton Solutions ......... 180
   5.4  Symmetry and the Perturbed Equation .................. 184
   5.5  Normal Form Theory ................................... 187
   5.6  Interactions of Solitary Waves ....................... 195
   5.7  Examples ............................................. 201
   References ................................................ 212

6  Multiscale Expansion and Integrability of Dispersive
   Wave Equations ............................................ 215
   A. Degasperis
   6.1  Introduction ......................................... 215
   6.2  Nonlinear Schrodinger-Type Model Equations and
        Integrability ........................................ 225
   6.3  Higher Order Terms and Integrability ................. 234
   References ................................................ 243

7  Painleve Tests, Singularity Structure and Integrability ... 245
   A.N.W. Hone
   7.1  Introduction ......................................... 245
   7.2  Painleve Analysis for ODEs ........................... 249
   7.3  The Ablowitz-Ramani-Segur Conjecture ................. 254
   7.4  The Weiss-Tabor-Carnevale Painleve Test .............. 257
   7.5  Truncation Techniques ................................ 261
   7.6  Weak Painleve Tests .................................. 267
   7.7  Outlook .............................................. 273
   References ................................................ 275

8  Hirota's Bilinear Method and Its Connection with
   Integrability ............................................. 279
   J. Hietarinta
   8.1  Why the Bilinear Form? ............................... 279
   8.2  From Nonlinear to Bilinear (KdV) ..................... 280
   8.3  Multisoliton Solutions for the KdV Class ............. 283
   8.4  Soliton Solution for the mKdV and sG Class ........... 290
   8.5  The Nonlinear Schrodinger Equation ................... 294
   8.6  Hierarchies .......................................... 303
   8.7  Bilinear Backlund Transformation ..................... 305
   8.8  The Three-Soliton Condition as an Integrability
        Test ................................................. 306
   8.9  From Bilinear to Nonlinear ........................... 310
   8.10 Conclusions .......................................... 312
   References ................................................ 312

9  Integrability of the Quantum XXZ Hamiltonian .............. 315
   T. Miwa
   9.1  Integrability ........................................ 315
   9.2  Symmetry ............................................. 319
   References ................................................ 323

Index ........................................................ 325


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:46 2019. Размер: 9,927 bytes.
Посещение N 1786 c 07.12.2010