| Shargorodsky E. Bernoulli free-boundary problems / E.Shargorodsky, J.F.Toland. - Providence: American Mathematical Society, 2008. - vii, 70 p.: ill. - (Memoirs of the American Mathematical Society; Vol.196, N 914). - Bibliogr.: p.65-67. - Ind.: p.69-70. - ISBN 978-0-8218-4189-1; ISSN 0065-9266
|
Chapter 1. Introduction ........................................ 1
Chapter 2. Bernoulli Free Boundaries ........................... 3
2.1. Special case: steady hydrodynamic waves ................ 4
2.2. General Case ........................................... 4
2.3. Notation ............................................... 7
2.4. Formulation as a Single Equation ....................... 9
2.5. Equations .............................................. 9
2.6. Example of (2.7) with Explicit Solutions .............. 10
2.7. Equivalence ........................................... 11
2.8. Inequalities .......................................... 12
2.9. Duality ............................................... 13
2.10. Example of (2.7) with Explicit Solutions: Duality ..... 13
2.11. Self-duality .......................................... 14
Chapter 3. Type-(I) Problems .................................. 15
3.1. Regularity ............................................ 15
3.2. Example of (2.7) with Explicit Solutions:
Regularity ............................................ 16
3.3. Dimension of the Set of Stagnation Points ............. 16
3.4. Jordan Curves ......................................... 16
3.5. Example of (2.7) with Explicit Solutions: Jordan
Curves ................................................ 17
3.6. Nekrasov's Equation ................................... 17
3.7. Nekrasov Duality ...................................... 19
3.8. Example of (2.7) with Explicit Solutions: Nekrasov
Duality ............................................... 20
3.9. Morse Index of Non-singular Solutions ................. 20
3.10. Example of (2.7) with Explicit Solutions: Morse
Index ................................................. 23
3.11. Stokes Waves .......................................... 23
Chapter 4. Proofs of Main Results ............................. 27
4.1. Equations: proofs of Theorem 2.4 and Corollary 2.5 .... 27
4.2. Equivalence: proofs of Theorems 2.7, 2.8 and 2.9 ...... 28
4.3. Inequalities: proof of Theorem 2.10 ................... 34
4.4. Duality ............................................... 35
4.5. Regularity: proofs of Theorems 3.1 and 3.3 ............ 38
4.6. Dimension of the Set of Stagnation Points: proof of
Theorem ............................................... 41
4.7. Jordan Curves: proofs of Theorem 3.5 and (3.3) ........ 42
4.8. Nekrasov's Equation: proof of Theorem 3.8 ............. 48
4.9. Morse Indices ......................................... 49
4.10. Plotnikov's Transformation ............................ 50
4.11. Sign of the Plotnikov Potential ....................... 53
4.12. Constant Plotnikov Potentials: Proofs of Theorem
3.14 .................................................. 53
4.13. Simple Morse-Index Estimates: Proof of Lemma 3.10 ..... 54
4.14. Morse Index and Stagnation Points ..................... 54
4.15. Proof of Theorem 3.13 ................................. 61
Appendix A. Auxiliary results ................................. 63
Bibliography ................................................... 65
Index .......................................................... 69
|
|