Memoirs of the American Mathematical Society; Vol.199, N 930 (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLiebscher V. Random sets and invariants for (Type II) continuous tensor product systems of Hilbert spaces. - Providence: American Mathematical Society, 2009. - xiii, 101 p. - (Memoirs of the American Mathematical Society; Vol.199, N 930). - Bibliogr.: p.99-101. - ISBN 978-0-8218-4318-5; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ........................................ ix

Chapter 2. Basics ............................................... 1

Chapter 3. From Product Systems to Random Sets .................. 3
   3.1. Product Systems ......................................... 3
   3.2. Random Sets in Product Systems .......................... 5
   3.3. Measure Types as Invariants ............................ 11
   3.4. Measure Types Related to Units ......................... 13
   3.5. Tensor Products (I) .................................... 15

Chapter 4. From Random Sets to Product Systems ................. 17
   4.1. General Theory ......................................... 17
   4.2. Example 1: Finite Random Sets .......................... 20
   4.3. Example 2: Countable Random Sets ....................... 21
   4.4. Example 3: Random Cantor Sets .......................... 22
   4.5. Tensor Products (II) ................................... 24
   4.6. The map fig.1 is surjective ....................... 27

Chapter 5. An Hierarchy of Random Sets ......................... 31
   5.1. Factorising Projections and Product Subsystems ......... 31
   5.2. Subsystems of fig.9 ..................................... 33
   5.3. The Lattice of Stationary Factorising Measure Types .... 38

Chapter 6. Direct Integral Representations ..................... 41
   6.1. Random Sets and Direct Integrals ....................... 41
   6.2. Direct Integrals in Product Systems .................... 44
   6.3. Characterisations of Type I Product Systems ............ 46
   6.4. Unitalising Type III Product Systems ................... 50

Chapter 7. Measurability in Product Systems: An Algebraic
           Approach ............................................ 53
   7.1. GNS-representations .................................... 53
   7.2. Algebraic Product Systems and Intrinsic Measurable
        Structures ............................................. 55
   7.3. Product Systems of W*-Algebras ......................... 66
   7.4. Product systems and Unitary Evolutions ................. 70
   7.5. Additional Results on Measurability .................... 76

Chapter 8. Construction of Product Systems from General
           Measure Types ....................................... 79
   8.1. General Results ........................................ 79
   8.2. Product Systems from Random Sets ....................... 84
   8.3. Product Systems from Random Measures ................... 85
   8.4. Product Systems from Random Increment Processes ........ 86

Chapter 9. Beyond Separability: Random Bisets .................. 89

Chapter 10.An Algebraic Invariant of Product Systems ........... 93

Chapter 11.Conclusions and Outlook ............................. 97

Bibliography ................................................... 99


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:36 2019. Размер: 6,681 bytes.
Посещение N 1616 c 09.11.2010