Memoirs of the American Mathematical Society; Vol.195, N 910 (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFriedman J. A proof of Alon's second eigenvalue conjecture and related problems. - Providence: American Mathematical Society, 2008. - vii, 100 p. - (Memoirs of the American Mathematical Society; Vol.195, N 910). - Bibliogr.: p.99-100. - ISBN 978-0-8218-4280-5; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1.  Introduction ........................................ 1

Chapter 2.  Problems with the Standard Trace Method ............. 7
   1. The Trace Method .......................................... 7
   2. Limitations of the Trace Expansion ....................... 12

Chapter 3.  Background and Terminology ......................... 17
   1. Graph Terminology ........................................ 17
   2. Variable-Length Graphs and Subdivisions .................. 18
   3. λ1 of a VLG .............................................. 19
   4. Shannon's Algorithm and Formal Series .................... 19
   5. Limiting Graphs .......................................... 22
   6. Irreducible Eigenvalues .................................. 22
   7. λ1 and Closed Walks for Infinite Graphs .................. 24
   8. A Curious Theorem ........................................ 24

Chapter 4.  Tangles ............................................ 27

Chapter 5.  Walk Sums and New Types ............................ 33
   1. Walk sums ................................................ 34
   2. The Loop ................................................. 39
   3. Forms, Types, and New Types .............................. 40
   4. Motivation of Types and New Types ........................ 43

Chapter 6.  The Selective Trace ................................ 47
   1. The General Selective Trace .............................. 47
   2. A Lemma on Selective Walks ............................... 47
   3. Determining τfund for fig.5n,d ................................ 51
   4. Determining τfund for fig.3n,d, fig.4n,d, and fig.6n,d ................. 51

Chapter 7.  Ramanujan Functions ................................ 57

Chapter 8.  An Expansion for Some Selective Traces ............. 59

Chapter 9.  Selective Traces In Graphs With (Without) 
            Tangles ............................................ 65

Chapter 10. Strongly Irreducible Traces ........................ 73

Chapter 11. A Sidestepping Lemma ............................... 77

Chapter 12. Magnification Theorems ............................. 81

Chapter 13. Finishing the fig.5n,d Proof ........................... 87


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:36 2019. Размер: 6,245 bytes.
Посещение N 1697 c 09.11.2010