Memoirs of the American Mathematical Society; Vol.195, N 912 (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChueshov I. Long-time behavior of second order evolution equations with nonlinear damping / I.Chueshov, I.Lasiecka. - Providence: American Mathematical Society, 2008. - viii, 183 p. - (Memoirs of the American Mathematical Society; Vol.195, N 912). - Bibliogr.: p.179-182. - Ind.: p.183. - ISBN 978-0-8218-4187-7; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... viii

Chapter 1. Introduction ......................................... 1
   1.1. Description of the problem studied ...................... 1
   1.2. The model and basic assumption .......................... 4
   1.3. Well-posedness .......................................... 8

Chapter 2. Abstract results on global attractors ............... 17
   2.1. Criteria for asymptotic smoothness of dynamical 
        systems ................................................ 18
   2.2. Criteria for finite dimensionality of attractors ....... 22
   2.3. Exponentially attracting positively invariant sets ..... 28
   2.4. Gradient systems ....................................... 32

Chapter 3. Existence of compact global attractors for
           evolutions of the second order in time .............. 38
   3.1. Ultimate dissipativity ................................. 39
   3.2. Asymptotic smoothness: the main assumption ............. 53
   3.3. Global attractors in subcritical case .................. 56
   3.4. Global attractors in critical case ..................... 63

Chapter 4. Properties of global attractors for evolutions of 
           the second order in time ............................ 90
   4.1. Finite dimensionality of attractors .................... 90
   4.2. Regularity of elements from attractors ................ 101
   4.3. Rate of stabilization to equilibria ................... 113
   4.4. Determining functionals ............................... 120
   4.5. Exponential fractal attractors (inertial sets) ........ 122

Chapter 5. Semilinear wave equation with a nonlinear 
           dissipation ........................................ 125
   5.1. The model ............................................. 125
   5.2. Main results .......................................... 127
   5.3. Proofs ................................................ 132

Chapter 6. Von Karman evolutions with a nonlinear 
           dissipation ........................................ 140
   6.1. The model ............................................. 140
   6.2. Properties of von Karman bracket ...................... 141
   6.3. Abstract setting of the model ......................... 142
   6.4. Model with rotational forces: α > 0 ................... 144
   6.5. Non-rotational case α = 0 ............................. 152

Chapter 7. Other models from continuum mechanics .............. 158
   7.1. Berger's plate model .................................. 158
   7.2. Mindlin-Timoshenko plates and beams ................... 164
   7.3. Kirchhoff limit in Mindlin-Timoshenko plates and
        beams ................................................. 167
   7.4. Systems with strong damping ........................... 173

Bibliography .................................................. 179

Index ......................................................... 183


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:36 2019. Размер: 6,770 bytes.
Посещение N 1647 c 09.11.2010