Memoirs of the American Mathematical Society; Vol.197, N 920 (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBenkart G. The recognition theorem for graded lie algebras in prime characteristic / G.Benkart, T.Gregory, A.Premet. - Providence: American Mathematical Society, 2009. - xi, 145 p. - (Memoirs of the American Mathematical Society; Vol.197, N 920). - Bibliogr.: p. 143-145. - ISBN 978-0-8218-4226-3; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction ................................................... ix

Chapter 1. Graded Lie Algebras .................................. 1
   1.1.  Introduction ........................................... 1
   1.2.  The Weisfeiler radical ................................. 2
   1.3.  The minimal ideal fig.6 .................................... 4
   1.4.  The graded algebras fig.7(V-t) and fig.7(Vt) .................. 5
   1.5.  The local subalgebra ................................... 8
   1.6.  General properties of graded Lie algebras .............. 9
   1.7.  Restricted Lie algebras ............................... 15
   1.8.  The main theorem on restrictedness (Theorem 1.63) ..... 17
   1.9.  Remarks on restrictedness ............................. 17
   1.10. The action of fig.80 on fig.8-j ............................... 18
   1.11. The depth-one case of Theorem 1.63 .................... 20
   1.12. Proof of Theorem 1.63 in the depth-one case ........... 21
   1.13. Quotients of fig.80 ....................................... 22
   1.14. The proof of Theorem 1.63 when 2 ≤ q ≤ r .............. 24
   1.15. The proof of Theorem 1.63 when q > r .................. 25
   1.16. General setup ......................................... 25
   1.17. The assumption [[fig.8-1, fig.8l],fig.81]  0 in Theorem 1.63 ..... 30

Chapter 2. Simple Lie Algebras and Algebraic Groups ............ 31
   2.1.  Introduction .......................................... 31
   2.2.  General information about the classical Lie 
         algebras .............................................. 31
   2.3.  Representations of algebraic groups ................... 38
   2.4.  Standard gradings of classical Lie algebras ........... 41
   2.5.  The Lie algebras of Cartan type ....................... 42
   2.6.  The Jacobson-Witt algebras ............................ 43
   2.7.  Divided power algebras ................................ 44
   2.8.  Witt Lie algebras of Cartan type  (the W series) ...... 45
   2.9.  Special Lie algebras of Cartan type (the S series) .... 47
   2.10. Hamiltonian Lie algebras of Cartan type
         (the H series) ........................................ 50
   2.11. Contact Lie algebras of Cartan type (the К
         series) ............................................... 54
   2.12. The Recognition Theorem with stronger hypotheses ...... 56
   2.13. fig.8 as a fig.80-module for Lie algebras fig.8 of Cartan type ... 57
   2.14. Melikyan Lie algebras ................................. 66

Chapter 3. The Contragredient Case ............................. 69
   3.1.  Introduction .......................................... 69
   3.2.  Results on modules for three-dimensional Lie
         algebras .............................................. 69
   3.3.  Primitive vectors in fig.81 and fig.8—1 ....................... 74
   3.4.  Subalgebras with a balanced grading ................... 77
   3.5.  Algebras with an unbalanced grading ................... 86

Chapter 4. The Noncontragredient Case .......................... 97
   4.1.  General assumptions and notation ...................... 97
   4.2.  Brackets of weight vectors in opposite gradation
         spaces ................................................ 98
   4.3.  Determining fig.80 and its representation on fig.8-1 .......... 99
   4.4.  Additional assumptions ............................... 105
   4.5.  Computing weights of b--primitive vectors in fig.81 ...... 105
   4.6.  Determination of the local Lie algebra ............... 115
   4.7.  The irreducibility of fig.81 ............................. 125
   4.8.  Determining the negative part when fig.81 is 
         irreducible .......................................... 133
   4.9.  Determining the negative part when fig.81 is reducible ... 137
   4.10. The case that fig.80 is abelian .......................... 141
   4.11. Completion of the proof of the Main Theorem .......... 142

Bibliography .................................................. 143


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:36 2019. Размер: 8,689 bytes.
Посещение N 1879 c 09.11.2010