Memoirs of the American Mathematical Society; Vol.197, N 922 (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBarbe Ph. Asymptotic expansions for infinite weighted convolutions of heavy tail distributions and applications / Ph.Barbe, W.P.McCormick. - Providence: American Mathematical Society, 2009. - vii, 117 p. - (Memoirs of the American Mathematical Society; Vol.197, N 922). - Bibliogr.: p.115-117. - ISBN 978-0-8218-4259-1; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1. Introduction ................................................. 1
   1.1. Prolegomenom ............................................ 1
   1.2. Mathematical overview and heuristics .................... 4

2. Main result .................................................. 9
   2.1. Some notation ........................................... 9
   2.2. Asymptotic scales ...................................... 10
   2.3. The Laplace characters ................................. 12
   2.4. Smoothly varying functions of finite order ............. 15
   2.5. Asymptotic expansion for infinite weighted 
        convolution ............................................ 16

3. Implementing the expansion .................................. 21
   3.1. How many terms are in the expansion? ................... 21
   3.2. *-Asymptotic scales and functions of class m ........... 24
   3.3. Tail calculus: From Laplace characters to linear
        algebra ................................................ 27
   3.4. Some examples .......................................... 28
   3.5. Two terms expansion and second order regular
        variation .............................................. 34
   3.6. Some open questions .................................... 36

4. Applications ................................................ 39
   4.1. ARMA models ............................................ 39
   4.2. Tail index estimation .................................. 40
   4.3. Randomly weighted sums ................................. 47
   4.4. Compound sums .......................................... 50
   4.5. Queueing theory ........................................ 53
   4.6. Branching processes .................................... 55
   4.7. Infinitely divisible distributions ..................... 56
   4.8. Implicit transient renewal equation and iterative
        systems ................................................ 58

5. Preparing the proof ......................................... 65
   5.1. Properties of Laplace characters ....................... 65
   5.2. Properties of smoothly varying functions of finite
        order .................................................. 67

6. Proof in the positive case .................................. 75
   6.1. Decomposition of the convolution into integral and
        multiplication operators ............................... 75
   6.2. Organizing the proof ................................... 77
   6.3. Regular variation and basic tail estimates ............. 79
   6.4. The fundamental estimate ............................... 82
   6.5. Basic lemmas ........................................... 83
   6.6. Inductions ............................................. 89
   6.7. Conclusion ............................................. 94

7. Removing the sign restriction on the random variables ....... 97
   7.1. Elementary properties of UH ............................ 98
   7.2. Basic expansion of UH .................................. 99
   7.3. A technical lemma ..................................... 100
   7.4. Conditional expansion and removing conditioning ....... 102

8. Removing the sign restriction on the constants ............. 105
   8.1. Neglecting terms involving the multiplication 
        operators ............................................. 105
   8.2. Substituting H(k) and G(k) by their expansions ......... 107

9. Removing the smoothness restriction ........................ 109

Appendix. Maple code .......................................... 111

Bibliography .................................................. 115


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:36 2019. Размер: 7,535 bytes.
Посещение N 1675 c 09.11.2010