Theoretical and computational methods in mineral physics: geophysical applications (Chantilly, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTheoretical and computational methods in mineral physics: geophysical applications / ed. by R.Wentzcovitch, L.Stixrude. - Chantilly: Mineralogical Society of America, 2010. - xvii, 484 p.: ill. - (Reviews in mineralogy and geochemistry; Vol.71). - Incl. bibl. ref. - ISBN 978-0-939950-85-0; ISSN 1529-6455
 

Оглавление / Contents
 
I  Density Functional Theory of Electronic Structure: A Short 
   Course for Mineralogists and Geophysicists
   John P. Perdew and Adrienn Ruzsinszky

INTRODUCTION AND SUMMARY ........................................ 1
KOHN-SHAM THEORY: THE ORBITALS MAKE IT ACCURATE ................. 2
   Motivation and history of Kohn-Sham theory ................... 2
   Summary of Kohn-Sham theory .................................. 3
   Uniform electron gas ......................................... 4
   What Kohn-Sham theory promises ............................... 5
   Solving the Kohn-Sham equations .............................. 6
EXCHANGE-CORRELATION ENERGY: NATURE'S GLUE ...................... 6
SEMILOCAL AND NONLOCAL APPROXIMATIONS: WHEN CAN WE STAY CLOSE
TO HOME? ........................................................ 8
   Local spin density approximation ............................. 8
   Gradient expansion ........................................... 8
   Generalized gradient approximation ........................... 8
   GGA's for solids ............................................. 9
   Ladder of density functional approximations: Meta-GGA and
   fully nonlocal ............................................... 9
   Semilocal approximations: What, why, and when? .............. 10
PRESSURE AND TEMPERATURE IN DENSITY FUNCTIONAL THEORY:
PRESSING DOWN AND HEATING UP ................................... 12
   Pressure .................................................... 12
   Temperature ................................................. 14
   Pressure and temperature together ........................... 15
ACKNOWLEDGMENTS ................................................ 15
REFERENCES ..................................................... 15


2  The Minnesota Density Functionals and their Applications
   to Problems in Mineralogy and Geochemistry
   Yan Zhao, Donald G. Truhlar

INTRODUCTION ................................................... 19
DENSITY FUNCTIONALS ............................................ 20
UNIVERSITY OF MINNESOTA FUNCTIONALS ............................ 22
VALIDATIONS AND APPLICATIONS ................................... 25
   Water and aqueous chemistry ................................. 25
   Atmospheric chemistry ....................................... 26
   Metal oxides ................................................ 27
   Silicates and siliceous minerals ............................ 27
   Zeolites .................................................... 28
   Mineral nanoparticles ....................................... 30
CONCLUDING REMARKS ............................................. 31
ACKNOWLEDGMENTS ................................................ 31
REFERENCES ..................................................... 31

3  Density-Functional Perturbation Theory for Quasi-Harmonic
   Calculations
   Stefano Baroni, Paolo Giannozzi, Eyvaz Isaev

INTRODUCTION ................................................... 39
THERMAL PROPERTIES AND THE QUASI-HARMONIC APPROXIMATION ........ 40
AB INITIO PHONONS .............................................. 42
   Lattice dynamics from electronic-structure theory ........... 42
   Density-functional perturbation theory ...................... 44
   Interatomic force constants and phonon band interpolation ... 45
COMPUTER CODES ................................................. 47
   Quantum ESPRESSO ............................................ 47
   The QHA code ................................................ 47
APPLICATIONS ................................................... 48
   Semiconductors and insulators ............................... 48
   Simple metals ............................................... 49
   Hydrides .................................................... 49
   Intermetallics .............................................. 50
   Surfaces .................................................... 50
   Earth materials ............................................. 51
CONCLUSIONS .................................................... 52
ACKNOWLEDGMENTS ................................................ 53
REFERENCES ..................................................... 53


4  Thermodynamic Properties and Phase Relations in Mantle
   Minerals Investigated by First Principles Quasiharmonic
   Theory
   Renata M. Wentzcovitch, Yonggang G. Yu, Zhongqing Wu

INTRODUCTION ................................................... 59
THE QUASIHARMONIC APPROXIMATION (QHA) .......................... 62
THERMODYNAMIC PROPERTIES OF MANTLE PHASES ...................... 63
   MgO ......................................................... 64
   MgSiO3-perovskite ........................................... 68
   MgSiO3 post-perovskite ...................................... 71
   SiO2 stishovite ............................................. 71
   Mg2SiO4 forsterite (α-phase) ................................ 72
   Mg2SiO4 wadsleyite (β-phase) ................................ 72
   Mg2SiO4 ringwoodite (γ-phase) ............................... 73
   Low- and high-pressure MgSiO3 chnoenstatite ................. 73
   MgSiO3 ilmenite ............................................. 73
   MgSiO3 majorite ............................................. 74
   CaO ......................................................... 75
   CaSiO3 perovskite ........................................... 75
PHASE RELATIONS IN SILICATES AND OXIDES ........................ 75
   Phase transitions in Mg2SiO4 ................................ 75
   Mantle density discontinuities caused by phase transitions
   in Mg2SiO4 .................................................. 78
   Low-pressure to high-pressure MgSiO3 chnoenstatite 
   transition .................................................. 82
   Post-perovskite transition in MgSiO3 ........................ 82
ANHARMONIC FREE ENERGY ......................................... 84
SUMMARY ........................................................ 89
APPENDIX ....................................................... 90
ACKNOWLEDGMENT ................................................. 91
REFERENCES ..................................................... 91
	
5  First Principles Quasiharmonic Thermoelasticity of Mantle
   Minerals
   Renata M. Wentzcovitch, Zhongqing Wu, Pierre Carrier

INTRODUCTION ................................................... 99
THEORETICAL BACKGROUND ........................................ 100
ELASTICITY OF LOWER MANTLE PHASES ............................. 104
   MgO ........................................................ 105
   MgSiO3-perovskite .......................................... 109
   MgSiO3-post-perovskite ..................................... 113
SELF-CONSISTENT QHA ........................................... 118
SUMMARY ....................................................... 122
ACKNOWLEDGMENTS ............................................... 124
REFERENCES .................................................... 124

6  An Overview of Quantum Monte Carlo Methods
   David M. Ceperley

MOTIVATION .................................................... 129
RANDOM WALK AND MARKOV CHAINS ................................. 129
VARIATIONAL MONTE CARLO	....................................... 130
DIFFUSION MONTE CARLO ......................................... 131
PATH INTEGRAL MC .............................................. 132
COUPLED ELECTRON ION MC ....................................... 133
AUXILLARY FIELD MC ............................................ 134
PROSPECTIVES .................................................. 134
REFERENCES .................................................... 134

7  Quantum Monte Carlo Studies of Transition Metal Oxides
   Lubos Mitas, Jindřich Kolorenč

ABSTRACT ...................................................... 137
INTRODUCTION .................................................. 137
MnO CALCULATIONS .............................................. 140
FeO CALCULATIONS .............................................. 141
CONCLUSION .................................................... 144
ACKNOWLEDGMENTS ............................................... 144
REFERENCES .................................................... 144

8  Accurate and Efficient Calculations on Strongly
   Correlated Minerals with the LDA+U Method: Review and 
   Perspectives
   Matteo Cococcioni

ABSTRACT ...................................................... 147
INTRODUCTION .................................................. 147
THE LDA+U FUNCTIONAL .......................................... 148
ENERGY DERIVATIVES ............................................ 151
   The Hubbard forces ......................................... 151
   The Hubbard stresses ....................................... 152
CALCULATION OF U .............................................. 155
   Li-ion batteries cathodes .................................. 155
   Water-solvated transition-metal ions ....................... 156
   Chemical reactions on transition-metal complexes ........... 157
TRANSITION-METAL-CONTAINING MINERALS .......................... 158
EXTENDED LDA+U+V APPROACH ..................................... 161
CONCLUSIONS AND OUTLOOK ....................................... 163
ACKNOWLEDGMENTS ............................................... 164
REFERENCES .................................................... 164

9  Spin-State Crossover of Iron in Lower-Mantle Minerals:
   Results of DFT+t/ Investigations
   Han Hsu, Koichiro Umemoto, Zhongqing Wu, Renata M. 
   Wentzcovitch

INTRODUCTION .................................................. 169
THE SPIN-PAIRING PHENOMENON ................................... 170
THEORETICAL APPROACH .......................................... 171
   Spin- and volume-dependent Hubbard U ....................... 171
   Thermodynamic treatment of the mixed spin state ............ 172
   The vibrational free energy: the Vibrational Virtual 
   Crystal Model (VVCM) ....................................... 173
   Computational details ...................................... 174
SPIN-STATE CROSSOVER IN FERROPERICLASE ........................ 175
   Static LDA+U calculation ................................... 176
   VVCM for ferropericlase .................................... 179
   Thermodynamic properties of ferropericlase ................. 181
SPIN-STATE CROSSOVER IN FERROSILICATE PEROVSKITE .............. 186
   Quadrupole splitting of ferrous iron in perovskite ......... 187
   Dependence of the spin crossover pressure on the site and
   orbital degeneracies ....................................... 189
   Dependence of transition pressure on the concentration
   and distribution of iron ................................... 191
SPIN-STATE CROSSOVER IN POST-PEROVSKITE ....................... 194
SUMMARY ....................................................... 195
ACKNOWLEDGMENT ................................................ 195
REFERENCES .................................................... 195

Simulating Diffusion
   Michael W. Ammann, John P. Brodholt, David P. Dobson

INTRODUCTION .................................................. 201
BASIC METHODS ................................................. 201
   Ab initio vs. empirical potentials ......................... 201
   Predicting diffusion coefficients in fluids and melts ...... 202
   Predicting diffusion coefficients in crystalline phases .... 202
   Defect calculations: Mott-Littleton, super-cells and 
   embedded clusters .......................................... 204
   The climbing image nudged elastic band method .............. 206
   LDAvs. GGA ................................................. 208
RESULTS ON MANTLE PHASES ...................................... 208
   Results on MgO ............................................. 208
   Results on MgSiO3 perovskite ............................... 213
   Other investigated silicon diffusion mechanisms ............ 218
IMPLICATIONS FOR THE EARTH'S LOWER MANTLE ..................... 219
   Viscosity of the lower mantle .............................. 219

CONCLUSIONS ................................................... 220
ACKNOWLEDGMENTS ............................................... 220
REFERENCES .................................................... 221

10 Modeling Dislocations and Plasticity of Deep Earth Materials
   Philippe Carrez, Patrick Cordier

CONTEXT ....................................................... 225
DISLOCATIONS AND PLASTIC DEFORMATION .......................... 225
MODELING DISLOCATIONS ......................................... 227
   The Volterra dislocation ................................... 227
   "Direct" atomistic calculations ............................ 227
   The Peierls-Nabarro (PN) model of dislocations: 
   fundamentals and recent developments ....................... 229
   Dislocation mobility at finite temperature ................. 233
SELECTED EXAMPLES ............................................. 235
   SrTiO3 perovskite .......................................... 235
   Magnesium oxide (MgO) ...................................... 239
CONCLUDING REMARKS ............................................ 247
REFERENCES .................................................... 248

11 Theoretical Methods for Calculating the Lattice Thermal
   Conductivity of Minerals 
   Stephen Stackhouse, Lars Stixrude

ABSTRACT ...................................................... 253
INTRODUCTION .................................................. 253
FUNDAMENTAL PRINCIPLES ........................................ 254
THEORETICAL METHODS ........................................... 255
   Green-Kubo method .......................................... 255
   Non-equilibrium molecular dynamics ......................... 257
   Transient non-equilibrium molecular dynamics ............... 261
   Combined Quasiharmonic Lattice Dynamics and Molecular 
   Dynamics Method ............................................ 263
   Anharmonic lattice dynamics method ......................... 264
DISCUSSION .................................................... 265
THE LATTICE THERMAL CONDUCTIVITY OF PERICLASE ................. 266
CONCLUSION .................................................... 267
ACKNOWLEDGMENTS ............................................... 267
REFERENCES .................................................... 268

13 Evolutionary Crystal Structure Prediction as a Method for
   the Discovery of Minerals and Materials
   Artem R. Oganov, Yanming Ma, Andriy O. Lyakhov, Mario 
   Valle, Carlo Gatti

ABSTRACT ...................................................... 271
INTRODUCTION .................................................. 272
EVOLUTIONARY ALGORITHM USPEX .................................. 272
OF THE ALGORITHM .............................................. 277
SOME APPLICATIONS OF THE METHOD ............................... 282
   CaCO3 polymorphs ........................................... 282
   Polymeric phase of CO2 ..................................... 284
   Semiconducting and metallic phases of solid oxygen:
   unusual molecular associations ............................. 285
   Reactivity of noble gases: are Xe-C compounds possible at
   high pressure? ............................................. 288
   Boron: novel phase with a partially ionic character ........ 288
   Sodium: a metal that goes transparent under pressure ....... 291
CONCLUSIONS ................................................... 293
ACKNOWLEDGMENTS ............................................... 295
REFERENCES .................................................... 296

14 Multi-Mbar Phase Transitions in Minerals 
   Koichiro Umemoto, Renata M. Wentzcovitch

INTRODUCTION .................................................. 299
COMPUTATIONAL BACKGROUND ...................................... 300
DISSOCIATION OF MgSiO3 PPV .................................... 300
LOW-PRESSURE ANALOG OF MgSiO3 ................................. 302
PREDICTION OF POST-PPV CRYSTALLINE PHASES ..................... 303
POST-POST-PEROVSKITE TRANSITION IN Al2O3 ...................... 305
RARE-EARTH SESQUISULFIDES ..................................... 307
M2O3 SESQUIOXIDES ............................................. 308
SUMMARY ....................................................... 310
ACKNOWLEDGMENTS ............................................... 311
REFERENCES .................................................... 311

15 Computer Simulations on Phase Transitions in Ice
   Koichiro Umemoto

INTRODUCTION .................................................. 315
BACKGROUND OF COMPUTATIONAL METHOD ............................ 315
EXCHANGE-CORRELATION FUNCTIONAL ............................... 317
   H2O monomer and dimer ...................................... 317
   Solid ice .................................................. 318
CRYSTALLINE PHASES ............................................ 319
   Phase diagram .............................................. 319
   Order-disorder transition .................................. 320
   Ice X: Hydrogen-bond symmetrization ........................ 322
   Beyond ice X ............................................... 323
   Isostructural transition in ice VIII at low pressure? ...... 323
AMORPHOUS ..................................................... 324
   Amorphization of ice Ih .................................... 324
   Amorphization of ice VIII .................................. 326
   Prediction of amorphization of ice XI ...................... 328
   Amorphization between low ↔ high density transformation .... 328
ACKNOWLEDGMENTS ............................................... 331
REFERENCES .................................................... 331


16 Iron at Earth's Core Conditions from First Principles
   Calculations
   Dario Alfe

ABSTRACT ...................................................... 337
INTRODUCTION .................................................. 337
STATIC PROPERTIES ............................................. 339
   Crystal structures and phase transitions ................... 339
   Elastic constants .......................................... 340
FINITE TEMPERATURE ............................................ 341
   The Helmholtz free energy: low temperature and the 
   quasi-harmonic approximation ............................... 343
   The Helmholtz free energy: high temperature and
   thermodynamic integration .................................. 345
   Melting .................................................... 348
REFERENCES .................................................... 352

17 First-Principles Molecular Dynamics Simulations of 
   Silicate Melts: Structural and Dynamical Properties
   Bijaya B. Karki

ABSTRACT ...................................................... 355
INTRODUCTION .................................................. 355
COMPUTATIONAL CHALLENGES ...................................... 358
METHODOLOGY ................................................... 359
   First-principles molecular dynamics simulations ............ 359
   Input configuration and simulation schedule ................ 361
   Derivation of physical properties .......................... 362
   Convergence tests .......................................... 364
   Visualization .............................................. 366
SIMULATION RESULTS AND DISCUSSION ............................. 371
   Equations of state and derived properties .................. 371
   Radial distribution functions .............................. 372
   Coordination environments .................................. 374
   Medium range order ......................................... 380
   Diffusion coefficients and viscosities ..................... 381
CONCLUSION AND FUTURE DIRECTIONS .............................. 386
ACKNOWLEDGMENTS ............................................... 386
REFERENCES

18 Lattice Dynamics from Force-Fields as a Technique for
   Mineral Physics
   Julian D. Gale, Kate Wright

INTRODUCTION .................................................. 391
METHODOLOGY ................................................... 392
   Interatomic potentials ..................................... 392
   Lattice dynamics versus molecular dynamics ................. 394
   Finding stationary points .................................. 396
   Mineral properties ......................................... 397
   Derivation of force-fields ................................. 398
   Evolution of a force-field: Silica potentials through the 
   ages ....................................................... 401
APPLICATIONS .................................................. 405
CONCLUSION .................................................... 408
ACKNOWLEDGMENTS ............................................... 409
REFERENCES .................................................... 409

19 An Efficient Cluster Expansion Method for Binary Solid 
   Solutions: Application to the Halite-Silvite, NaCl-KCl,
   System
   Victor Vinograd, Björn Winkler

ABSTRACT ...................................................... 413
INTRODUCTION .................................................. 414
DECOMPOSITION OF THE EXCESS ENTHALPY INTO PAIRWISE 
INTERACTIONS .................................................. 417
THE DOUBLE DEFECT METHOD (DDM) ................................ 419
THE SYSTEM NaCl-KCl  .......................................... 421
   Quantum mechanical calculations ............................ 421
   Calculation of the excess energies based on the empirical 
   force-field model .......................................... 421
   The enthalpy of mixing in the limit of the complete 
   disorder ................................................... 422
   Monte Carlo simulations of the effect of the temperature
   on the enthalpy of mixing .................................. 424
   The phase diagram .......................................... 425
   The excess vibrational free energy ......................... 425
DISCUSSION AND CONCLUSIONS .................................... 430
ACKNOWLEDGMENTS ............................................... 434
REFERENCES
	
20 Large Scale Simulations
   Mark S. Ghiorso, Frank J. Spera

INTRODUCTION .................................................. 437
THERMODYNAMIC ANALYSIS ........................................ 440
   Polyamorphism .............................................. 447
   Hugoniot ................................................... 450
STRUCTURAL FEATURES ........................................... 451
Microscopic to macroscopic .................................... 454
TRANSPORT PROPERTIES .......................................... 458
   Viscosity .................................................. 458
   Self-diffusivity ........................................... 459
   Eyring relation ............................................ 461
THE FUTURE - LSS IN THE CONTEXT OF FPMD ....................... 462
ACKNOWLEDGMENTS ............................................... 462
REFERENCES .................................................... 462

21 Thermodynamics of the Earth's Mantle
   Lars Stixrude, Carolina Lithgow-Bertelloni

INTRODUCTION .................................................. 465
OUR APPROACH AND PREVIOUS WORK ................................ 466
   Fundamental thermodynamic relations ........................ 467
   Euler form ................................................. 467
   Legendre transformations ................................... 467
   Anisotropic generalization ................................. 468
THERMODYNAMIC THEORY .......................................... 468
CONSTRAINING AND TESTING THE MODEL ............................ 471
   Elastic constants .......................................... 472
   Griineisen parameter and q ................................. 472
   Temperature dependence of the shear modulus ................ 472
SCALING ....................................................... 473
APPLICATIONS .................................................. 475
   Origin of the low velocity zone ............................ 475
   Origins of lateral heterogeneity ........................... 476
   Influence of lithologic heterogeneity ...................... 479
CONCLUSIONS AND OUTLOOK ....................................... 481
REFERENCES .................................................... 481


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:32 2019. Размер: 29,473 bytes.
Посещение N 2323 c 19.10.2010