Triebel H. Function spaces and wavelets on domains (Zurich, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTriebel H. Function spaces and wavelets on domains. - Zürich: European Mathematical Society Pub. House, 2008. - ix, 256 p.: ill. - (EMS tracts in mathematics; 7). - Bibliogr.: p.243-250. - Ind.: p.255-256. - ISBN 978-3-03719-019-7
 

Оглавление / Contents
 
Preface ......................................................... v
   
1  Spaces on fig.7n and fig.8n .......................................... 1
   1.1  Definitions, atoms, and local means ..................... 1
        1.1.1  Definitions ...................................... 1
        1.1.2  Atoms ............................................ 4
        1.1.3  Local means ...................................... 6
   1.2  Spaces on fig.7n ........................................... 13
        1.2.1  Wavelets in L2(fig.7n)  ............................. 13
        1.2.2  Wavelets in Aspg(fig.7n) ............................. 14
        1.2.3  Wavelets in Aspg(fig.7n,ω) ........................... 17
        1.3  Periodic spaces on fig.7n and fig.8n ...................... 19
        1.3.1  Definitions and basic properties ................ 19
        1.3.2  Wavelets in As,perpg(fig.7n) .......................... 23
        1.3.3  Wavelets in Aspg(fig.8n) ............................. 26
   
2  Spaces on arbitrary domains ................................. 28
   2.1  Basic definitions ...................................... 28
        2.1.1  Function spaces ................................. 28
        2.1.2  Wavelet systems and sequence spaces ............. 30
   2.2  Homogeneity and refined localisation spaces ............ 33
        2.2.1  Homogeneity ..................................... 33
        2.2.2  Pointwise multipliers ........................... 35
        2.2.3  Refined localisation spaces ..................... 36
   2.3  Wavelet para-bases ..................................... 41
        2.3.1  Some preparations ............................... 41
        2.3.2  Wavelet para-bases in Fs,rlocpg(Ω) ................ 43
        2.3.3  Wavelet para-bases in Lp(Ω), 1 < p < ∞ .......... 46
   2.4  Wavelet bases .......................................... 48
        2.4.1  Orthonormal wavelet bases in L2(Ω) .............. 48
        2.4.2  Wavelet bases in Lp(Ω) and Fs,rlocpg(Ω) ........... 53
   2.5  Complements ............................................ 55
        2.5.1  Haar bases ...................................... 55
        2.5.2  Wavelet bases in Lorentz and Zygmund spaces ..... 60
        2.5.3  Constrained wavelet expansions for Sobolev
               spaces .......................................... 65
   
3  Spaces on thick domains ..................................... 69
   3.1  Thick domains .......................................... 69
        3.1.1  Introduction .................................... 69
        3.1.2  Classes of domains .............................. 69
        3.1.3  Properties and examples ......................... 73
   3.2  Wavelet bases in Āspg(Ω) ................................ 77
        3.2.1  The spaces fig.9spg(Ω) ............................... 77
        3.2.2  The spaces Āspg(Ω) I ............................. 79
        3.2.3  Complemented subspaces .......................... 83
        3.2.4  Porosity and smoothness zero .................... 85
        3.2.5  The spaces Āspg(Ω) II ............................ 89
   3.3  Homogeneity and refined localisation, revisited ........ 91
        3.3.1  Introduction .................................... 91
        3.3.2  Homogeneity: Proof of Theorem 2.11 .............. 92
        3.3.3  Wavelet bases in Fs,rlocpg(Ω), revisited .......... 95
        3.3.4  Duality ......................................... 97
   
4  The extension problem ...................................... 101
   4.1  Introduction and criterion ............................ 101
        4.1.1  Introduction ................................... 101
        4.1.2  A criterion .................................... 101
   4.2  Main assertions ....................................... 103
        4.2.1  Positive smoothness ............................ 103
        4.2.2  Negative smoothness ............................ 105
        4.2.3  Combined smoothness ............................ 106
   4.3  Complements ........................................... 108
        4.3.1  Interpolation .................................. 108
        4.3.2  Constrained wavelet expansions in Lipschitz 
               domains ........................................ 112
        4.3.3  Intrinsic characterisations .................... 117
        4.3.4  Compact embeddings ............................. 123
   
5  Spaces on smooth domains and manifolds ..................... 130
   5.1  Wavelet frames and wavelet-friendly extensions ........ 130
        5.1.1  Introduction ................................... 130
        5.1.2  Wavelet frames on manifolds .................... 132
        5.1.3  Wavelet-friendly extensions .................... 139
        5.1.4  Decompositions ................................. 147
        5.1.5  Wavelet frames in domains ...................... 151
   5.2  Wavelet bases: criterion and lower dimensions ......... 158
        5.2.1  Wavelet bases on manifolds ..................... 158
        5.2.2  A criterion .................................... 160
        5.2.3  Wavelet bases on intervals and planar 
               domains ........................................ 161
   5.3  Wavelet bases: higher dimensions ...................... 163
        5.3.1  Introduction ................................... 163
        5.3.2  Wavelet bases on spheres and balls ............. 164
        5.3.3  Wavelet bases in cellular domains and 
               manifolds ...................................... 167
        5.3.4  Wavelet bases in С∞ domains and cellular
               domains ........................................ 172
   5.4  Wavelet frames, revisited ............................. 174
        5.4.1  Wavelet frames in Lipschitz domains ............ 174
        5.4.2  Wavelet frames in (ε, δ)-domains ............... 177

6  Complements ................................................ 178
   6.1  Spaces on cellular domains ............................ 178
        6.1.1  Riesz bases .................................... 178
        6.1.2  Basic properties ............................... 181
        6.1.3  A model case: traces and extension ............. 185
        6.1.4  A model case: approximation, density, 
               decomposition .................................. 188
        6.1.5  Cubes and polyhedrons: traces and extensions ... 192
        6.1.6  Cubes and polyhedrons: Riesz bases ............. 196
        6.1.7  Cellular domains: Riesz bases .................. 197
   6.2  Existence and non-existence of wavelet frames and 
        bases ................................................. 199
        6.2.1  The role of duality, the spaces Bspg(fig.7n) ........ 199
        6.2.2  The non-existence of Riesz frames in
               exceptional spaces ............................. 202
        6.2.3  Reinforced spaces .............................. 204
        6.2.4  A proposal ..................................... 208
   6.3  Greedy bases .......................................... 210
        6.3.1  Definitions and basic assertions ............... 210
        6.3.2  Greedy Riesz bases ............................. 212
   6.4  Dichotomy: traces versus density ...................... 215
        6.4.1  Preliminaries .................................. 215
        6.4.2  Traces ......................................... 218
        6.4.3  Dichotomy ...................................... 220
        6.4.4  Negative smoothness ............................ 226
        6.4.5  Curiosities .................................... 226
        6.4.6  Pointwise evaluation ........................... 228
        6.4.7  A comment on sampling numbers .................. 232
   6.5  Polynomial reproducing formulas ....................... 237
        6.5.1  Global reproducing formulas .................... 237
        6.5.2  Local reproducing formulas ..................... 239
        6.5.3  A further comment on sampling numbers .......... 240
        Bibliography .......................................... 243
   
Symbols ....................................................... 251
   
Index ......................................................... 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:30 2019. Размер: 13,047 bytes.
Посещение N 2012 c 12.10.2010