Preface ......................................................... V
List of Contributors .......................................... XIX
1 Designing Polymer Properties ................................. 1
Markus Gahleitner and John R. Severn
1.1 Polyolefms .............................................. 1
1.2 Levels and Scales of Polymer Structure and
Modification ............................................ 2
1.2.1 Chain Structure: Chemistry, Interaction,
Regularity, and Disturbance ...................... 2
1.2.1.1 Chain Topology: SCB, LCB, and Special
Structures .............................. 4
1.2.1.1 Molecular Weight Distribution (MWD) ..... 4
1.2.1.3 Blends and Other Multiphase
Structures .............................. 5
1.2.2 Semi-crystalline Polymers: From Lattices to
Superstructures .................................. 6
1.2.2.1 Chain Structure and Crystallization
Speed ................................... 6
1.2.2.2 Lamellar Thickness and Modulus .......... 7
1.2.2.3 Nucleation and Polymorphism ............. 7
1.2.2.4 Flow-induced Structures and Processing
Effects ................................. 8
1.2.3 Multiphase Structures ............................ 9
1.2.3.1 General Concepts of Impact
Modification ............................ 9
1.2.3.2 Multi-stage Copolymers (PP) ............. 9
1.2.3.3 Polymer Blends and Reactive
Modification ............................ 9
1.2.3.4 Compounds and (Nano)Composites ......... 10
1.2.4 Property Optimization in Processing ............. 11
1.3 Polymer Design: The Catalyst's Point of View ........... 11
1.3.1 Mechanisms and Kinetics: A "Tailors Toolbox" .... 12
1.3.1.1 Activation, Initiation, Propagation:
On your Marks, Get Set,... Go!! ........ 12
1.3.1.2 Chain Transfer ......................... 15
1.3.1.3 Insertion Control ...................... 18
1.3.1.4 Summary ................................ 24
1.3.2 Case Study 1: Development of Commercially
Relevant Single-Site iPP Catalysts .............. 24
1.3.3 Case Study 2: One Monomer, Many
Microstructures ................................. 28
1.3.3.1 Propylene .............................. 28
1.3.3.2 Ethylene ............................... 31
1.3.4 Case Study 3: FI Catalysts; From Lazy to
Hyperactive, and Beyond ......................... 34
1.3.5 Case Study 4: "Chain-shuttling" ................. 36
1.4 Immobilizing "Single-site" Olefin Polymerization
Catalysts: The Basic Problems .......................... 38
Reference ................................................... 39
2 Traditional Heterogeneous Catalysts ......................... 43
2.1 Ziegler-Natta Catalysts in Polyolefm Synthesis ......... 43
John С. Chadwick, Thomas Garoff, and John R. Severn
2.1.1 Introduction .................................... 43
2.1.2 Ziegler-Natta Catalysts for Polypropylene ....... 44
2.1.2.1 Third-Generation MgCl2-supported
Catalysts .............................. 44
2.1.2.2 Fourth-Generation MgCl2-supported
Catalysts .............................. 46
2.1.2.3 Fifth-Generation MgCl2-supported
Catalysts .............................. 47
2.1.2.4 New Developments ....................... 48
2.1.2.5 Mechanistic Aspects .................... 48
2.1.3 Ziegler Catalysts in Polyethylene ............... 52
2.1.3.1 Ideal Catalysts? ....................... 52
2.1.3.2 Ball-milled MgClrbased Ziegler
Catalysts .............................. 52
2.1.3.3 MgCl2-Titanium Catalysts on Silica ..... 53
2.1.3.4 Precipitated and Supported MgCl2-
based Catalysts ........................ 54
2.1.3.5 Spray-dried MgCl2-Titanium Catalysts ... 54
2.1.3.6 General Polymerization Behavior of
the MgCl2-Titanium-based Ziegler
Catalysts .............................. 54
2.1.3.7 Models for Chemical Composition
Distribution and Comonomer Drift ....... 56
2.1.3.8 Vanadium-based Ziegler Catalysts ....... 59
2.1.4 Concluding Remarks .............................. 59
2.2 Chromium Polymerization Catalysts: Still
Alive in Polyethylene Production ........... 60
Hilkka Knuuttila and Arja Lehtinen
2.2.1 Introduction .................................... 60
2.2.2 The Chromium Catalyst System .................... 60
2.2.2.1 Activation of the Chromium Catalyst .... 62
2.2.3 Polymerization Mechanism ........................ 64
2.2.4 Chromium Catalyst Performance ................... 67
2.2.4.1 The Effect of Carrier Material and
Calcination Temperature ................ 67
2.2.4.2 Effect of Polymerization Temperature ... 68
2.2.4.3 Effect of Hydrogen/Hydrogen
Sensitivity ............................ 69
2.2.5 Summary ......................................... 70
References ...................................... 72
3 Polymer Particle Growth and Process Engineering Aspects ..... 79
Michael Bartke
3.1 Heterogeneous Polymerization with Supported Catalysts
versus Polymerization in Homogeneous Phase ............. 79
3.2 Phenomena in Polymerization with Heterogeneous
Catalysts .............................................. 80
3.2.1 The Particle as Microreactor .................... 80
3.2.2 Polymer Particle Growth and Morphology
Development ..................................... 81
3.2.3 Mass Transfer in Polymerizing Particles ......... 85
3.2.4 Role of Catalyst Porosity ....................... 86
3.2.5 Particle Homogeneity/Videomicroscopy ............ 86
3.2.6 Prepolymerization ............................... 87
3.3 Polymerization Processes and Reactors for
Polymerization with Heterogeneous Catalysts ............ 88
3.3.1 Slurry/Bulk Processes ........................... 88
3.3.2 Gas-Phase Polymerization ........................ 89
3.3.3 Cascaded Processes .............................. 90
3.4 Requirements for Polymerization Catalysts .............. 93
References .................................................. 93
4 Methylaluminoxane (MAO), Silica and a Complex: The "Holy
Trinity" of Supported Single-site Catalyst .................. 95
John R. Severn
4.1 Introduction ........................................... 95
4.1.1 Background ...................................... 95
4.1.2 Commercial Catalysts ............................ 96
4.1.3 Polymer Particle Growth ......................... 98
4.2 Basic Ingredients ..................................... 100
4.2.1 Silica Supports ................................ 100
4.2.1.1 Silica Synthesis ...................... 100
4.2.1.2 Thermal Modification .................. 103
4.2.2 Methylaluminoxane .............................. 105
4.2.2.1 Synthesis of MAO ...................... 105
4.2.2.2 Characterization of MAO ............... 107
4.2.2.3 MAO Interaction with a Precatalyst
Complex ............................... 109
4.2.2.4 MAO Interaction with a Silica
Surface ............................... 110
4.3 Catalyst Preparations ................................. 113
4.3.1 Illustrative Examples of Route С ............... 114
4.3.2 Illustrative Examples of Route A ............... 115
4.3.3 Illustrative Examples of Route В ............... 119
4.3.4 A Summary of Catalyst Preparations ............. 122
4.4 Pitfalls in the Generation of Single-Site Polymer
Material .............................................. 122
4.4.1 The Polymerization Experiment .................. 123
4.4.2 Multiple Sites and Product Quality ............. 125
4.4.2.1 Catalyst Homogeneity .................. 125
4.4.2.2 Influencing the Coordination Sphere
of the Active Sites ................... 129
4.4.2.3 Mass Transport Limitations ............ 131
4.5 Conclusions ........................................... 135
References ................................................. 135
5 Perfluoroaryl Group 13 Activated Catalysts on Inorganic
Oxides ..................................................... 139
Gregory G. Hlatky and Michael W. Lynch
5.1 Introduction .......................................... 139
5.2 Supported Perfiuoroarylborate Catalysts ............... 140
5.3 Supported Perfluoroarylborane and Perfluoroarylalane
Catalysts ............................................. 144
5.4 Conclusions ........................................... 148
References ................................................. 148
6 Catalysts Supported on Magnesium Chloride .................. 151
John C. Chadwick
6.1 Introduction .......................................... 151
6.2 Magnesium Chloride as Activator ....................... 151
6.3 Magnesium Chloride/Methylaluminoxane .................. 152
6.4 Magnesium Chloride/Borate ............................. 155
6.5 Magnesium Chloride/Aluminum Alkyl ..................... 157
6.5.1 Early-Transition Metal Complexes ............... 157
6.5.2 Late-Transition Metal Complexes ................ 162
6.6 Conclusions ........................................... 166
References ................................................. 167
7 Metallocene Activation by Solid Acids ...................... 171
Max P. McDaniel, Michael D. Jensen, Kumindini Jayaratne,
Kathy S. Collins, Elizabeth A. Benham, Neal D. McDaniel,
P.K. Das, Joel L. Martin, Qing Yang, Mathew G. Thorn,
and Albert P. Masino
7.1 Introduction .......................................... 171
7.2 Experimental .......................................... 172
7.2.1 Solid Acid Preparation ......................... 172
7.2.2 Polymerization ................................. 173
7.2.3 Acidity Measurements ........................... 174
7.3 Results and Discussion ................................ 174
7.3.1 Simple Oxides .................................. 174
7.3.2 Silica with Added Anion ........................ 175
7.3.2.1 Fluoride Treatment .................... 176
7.3.2.2 Chloride Treatment .................... 176
7.3.2.3 Sulfate Treatment ..................... 177
7.3.2.4 Anions Containing a Lewis Acid
Metal ................................. 177
7.3.3 Alumina with Added Anion ....................... 178
7.3.3.1 Fluoride Treatment .................... 179
7.3.3.2 Chloride Treatment .................... 181
7.3.3.3 Bromide Treatment ..................... 182
7.3.3.4 Phosphate Treatment ................... 182
7.3.3.5 Triflate Treatment .................... 183
7.3.3.6 Sulfate Treatment ..................... 183
7.3.4 Silica-Alumina with Added Anions ............... 185
7.3.4.1 Fluoride Treatment .................... 186
7.3.4.2 Triflic Acid Treatment ................ 188
7.3.4.3 Treatment with Other Anions ........... 189
7.3.5 Other Mixed Oxides with Added Anion ............ 190
7.3.6 Combining Multiple Anions or Lewis Acidic
Metals ......................................... 190
7.4 Metallocene Choice .................................... 192
7.5 Participation by Aluminum Alkyl ....................... 193
7.6 Bronsted versus Lewis Acidity ......................... 194
7.7 Polymer Molecular Weight Distribution ................. 196
7.8 Leaching of the Metallocene ........................... 198
7.9 Characterization of Active Sites ...................... 199
7.9.1 Adsorption of Pyridine ......................... 199
7.9.2 Adsorption of Metallocene ...................... 200
7.9.3 Adsorption of Ether ............................ 203
7.9.4 Adsorption of Carbon Monoxide .................. 205
7.9.5 Adsorption of Water Vapor ...................... 205
7.10 Clay as an Activator .................................. 206
7.11 Zeolites as Metallocene Activators .................... 208
7.12 Conclusions ........................................... 209
References ................................................. 210
8 Supported Multicomponent Single-Site a-Olefin
Polymerization Catalysts ................................... 211
Nic Friederichs, Nourdin Chalit, and Wei Xu
8.1 Introduction .......................................... 211
8.2 Supported Catalysts for Concurrent Tandem
Oligomerization/ Copolymerization ..................... 212
8.3 Concurrent Tandem Catalysis for Increased Levels of
Long-Chain Branching (LCB) ............................ 215
8.4 Supported Multicomponent Catalysts for Bimodal/
Multimodal MMD Polyethylene ........................... 218
8.4.1 Mixed Ziegler or Phillips and Single-Site
Polymerization Catalysts ....................... 220
8.4.2 Mixed Single-Site Catalysts .................... 223
8.4.3 Challenges in Operating Dual Catalysts for
Bimodal Polyethylene in a Single Reactor ....... 226
8.5 Multicomponent Catalysts for Polypropylene ............ 229
8.6 Multicomponent Catalysts for Block Copolymers ......... 231
8.7 Conclusions ........................................... 231
References ................................................. 232
9 Tethering Olefin Polymerization Catalysts and Cocatalysts
to Inorganic Oxides ........................................ 239
Jason С. Hicks and Christopher W. Jones
9.1 Introduction .......................................... 239
9.2 Surface-Tethered Precatalysts ......................... 240
9.2.1 Surface-Tethered Metallocene Precatalysts ...... 240
9.2.2 Surface-Tethered Constrained-Geometry
Precatalysts ................................... 246
9.2.3 Tethering Late Transition Metal Precatalysts ... 250
9.3 Tethering Cocatalysts ................................. 253
9.4 Molecular Models ...................................... 255
9.5 Conclusions ........................................... 258
References ................................................. 259
10 Polymerization with the Single-Site Catalyst Confined
within the Nanospace of Mesoporous Materials or Clays ...... 261
Young Soo Ко and Seong Ihl Woo
10.1 Introduction .......................................... 261
10.2 Single-Site Catalyst Confined within the Nanopores
of Mesoporous Materials ............................... 263
10.2.1 Ethylene Polymerization ........................ 263
10.2.1.1 Extrusion Polymerization within the
Pore .................................. 263
10.2.1.2 Al-MCM-41 ............................. 264
10.2.1.3 Shape-Selective Polymerization in
the Nanopore .......................... 267
10.2.1.4 The Effect of Pore Diameter on
Polymerization ........................ 268
10.2.1.5 Tethering of Single-Site Catalyst
within the Nanopore of MCM-41 ......... 269
10.2.1.6 In-situ Synthesis of CGC on the
Surface of SBA-15 ..................... 269
10.2.2 Propylene Polymerization ....................... 270
10.3 Single-Site Catalyst Confined within the
Nanogalleries of Mineral Clays ........................ 271
10.4 Summary ............................................... 274
References ................................................. 275
11 Polymeric Supported Catalysts .............................. 277
Markus Klapper and Gerhard Fink
11.1 Introduction .......................................... 277
11.2 Polysiloxanes ......................................... 278
11.2.1 Supported Precatalysts ......................... 278
11.2.2 Supported Cocatalysts .......................... 281
11.3 Polystyrene ........................................... 283
11.3.1 Metallocene Functionalized Linear
Polystyrene .................................... 283
11.3.2 Metallocene Inside Polystyrene Resins .......... 284
11.3.3 Metallocene Supported on Polystyrene
Nanoparticles .................................. 286
11.4 Dendrimers ............................................ 292
11.5 Polyolefins ........................................... 294
11.6 Carbon Nanotubes ...................................... 295
References ................................................. 301
12 Self-immobilizing Catalysts for Olefin Polymerization ...... 305
Helmut G. Alt and Christian Cörl
12.1 General Aspects: Why Heterogenize Homogeneous Olefin
Polymerization Catalysts? ............................. 305
12.2 A New Approach: Self-immobilizing Catalysts - Let
the Catalyst Produce its own Support .................. 306
12.3 Self-immobilizing Metallocene Catalysts ............... 307
12.3.1 Preparation of Various Alkenyl Functionalized
Metallocene Complexes .......................... 307
12.3.2 Metallacyclic Metallocene Complexes ............ 309
12.4 Self-immobilizing Half-Sandwich Complexes ............. 314
12.5 Self-immobilizing Non-Metallocene Transition Metal
Complexes ............................................. 318
12.6 Self-immobilizing Cocatalysts ......................... 321
References ............................................ 322
Index ......................................................... 327
|