List of Contributors ......................................... XVII
1 Introduction ................................................. 1
L. Pavesi and R. Turan
References ................................................... 4
2 Electronic and Optical Properties of Silicon Nanocrystals .... 5
Ceyhun Bulutay and Stefano Ossicini
2.1 Introduction ............................................ 5
2.2 Electronic Structure and Optical Properties for Small
Nanocrystals: Ab Initio Calculation ..................... 7
2.2.1 Hydrogenated Silicon Nanocrystals ................ 9
2.2.2 Oxidized Silicon Nanocrystals ................... 11
2.2.3 Doped Silicon Nanocrystals ...................... 14
2.2.3.1 Single-Doped Silicon Nanocrystals ...... 14
2.2.3.2 Codoped Silicon Nanocrystals ........... 15
2.2.4 Silicon Nanocrystals Embedded in a SiO2
Matrix .......................................... 18
2.3 Electronic Structure and Optical Properties for Large
Nanocrystals: Atomistic Semiempirical
Pseuodopotential Calculations .......................... 22
2.3.1 Effective Optical Gap ........................... 24
2.3.2 Radiative Lifetime .............................. 25
2.3.3 Linear Optical Absorption ....................... 26
2.3.3.1 Interband Absorption ................... 28
2.3.3.2 Intraband Absorption ................... 29
2.3.3.3 Excited State Absorption ............... 30
2.3.4 Third-Order Nonlinear Optical Properties ........ 30
2.3.5 Quantum-Confined Stark Effect in Si
Nanocrystals .................................... 35
References ............................................. 38
3 Optical Properties of Intrinsic and Shallow Impurity-Doped
Silicon Nanocrystals ........................................ 43
Minoru Fujii
3.1 Introduction ........................................... 43
3.2 PL Properties of Intrinsic Silicon Nanocrystals ........ 45
3.2.1 Fundamental Properties .......................... 45
3.2.2 Effect of Size and Shape Distribution on the
PL Bandwidth .................................... 48
3.2.3 Resonant Quenching of PL Band Due to Energy
Transfer ........................................ 48
3.2.4 PL Quantum Efficiency of Intrinsic Si
Nanocrystals .................................... 51
3.3 Shallow Impurity-Doped Si Nanocrystals ................. 53
3.3.1 Preparation of Impurity-Doped Si Nanocrystals ... 53
3.3.2 PL from B-Doped Si Nanocrystals ................. 54
3.3.3 PL from P-Doped Si Nanocrystals ................. 55
3.3.4 Electron Spin Resonance Studies of Shallow
Impurity-Doped Si Nanocrystals .................. 55
3.3.5 Location of Dopant Atoms ........................ 57
3.4 P and В Codoped Si Nanocrystals ........................ 58
3.4.1 PL Properties of P and В Codoped Si
Nanocrystals .................................... 59
3.4.2 PL Lifetime of P and В Codoped Si
Nanocrystals .................................... 62
3.4.3 Codoped But Not Compensated Si Nanocrystals ..... 63
3.5 Summary ................................................ 63
References ............................................. 64
4 Electrical Transport Mechanisms in Ensembles of Silicon
Nanocrystallites ............................................ 69
I. Balberg
4.1 Introduction ........................................... 69
4.2 Background ............................................. 71
4.2.1 Basic Concepts Associated with Transport and
Quantum Dots .................................... 71
4.2.2 Previous Studies of Transport in Systems of
Si .............................................. 75
4.3 Experimental Details ................................... 78
4.4 Experimental Results and Their Interpretation .......... 81
4.4.1 The Low-x Regime ................................ 84
4.4.2 The Low-x to Intermediate x Transition Regime ... 86
4.4.3 The Intermediate-x Regime ....................... 87
4.4.4 The Percolation Threshold Regime ................ 89
4.4.5 The High-x Regime ............................... 92
4.5 Discussion and Overview ................................ 96
References ............................................ 101
5 Thermal Properties and Heat Transport in Silicon-Based
Nanostructures ............................................. 105
Han-Yun Chang and Leonid Tsybeskov
5.1 Introduction .......................................... 105
5.2 Thermal Conductivity in Bulk Solids and
Nanostructures ........................................ 107
5.2.1 Kinetic Theory. Thermal Properties and Heat
Flow ........................................... 107
5.2.2 Lattice Thermal Conductivity ................... 108
5.2.3 Electronic Thermal Conductivity ................ 112
5.3 Measurements of Thermal Conductivity in
Nanostructures ........................................ 114
5.3.1 The 3ω Method .................................. 115
5.3.2 In-Plane Thermal Conductivity Measurements ..... 117
5.3.3 Pump-Probe and Other Optical Measurements ...... 119
5.3.4 Raman Scattering and Thermal Conductivity ...... 120
5.4 Thermal Properties of Si-Based Nanostructures ......... 122
5.4.1 Two- and One-Dimensional Si Nanostructures:
Si-on-Insulator and Si Nanowires ............... 122
5.4.2 Epitaxially Grown Si/SiGe Nanostructures:
Superlattices and Cluster Multilayers .......... 125
5.4.3 Electrochemically Etched Si (Porous Si) ........ 131
5.4.4 Nanocrystalline Si/SiO2 Multilayers ............ 134
5.5 Conclusions ........................................... 143
References ............................................ 145
6 Surface Passivation and Functionalization of Si
Nanocrystals ............................................... 155
Jonathan Veinot
6.1 Introduction .......................................... 155
6.2 Functionalizing Freestanding Particles ................ 156
6.3 In Situ Surface Chemistry Tailoring ................... 156
6.4 Aerosol-Based Functionalization ....................... 158
6.5 Solution-Based Postsynthetic Modification ............. 158
6.6 Hydrosilylation ....................................... 162
6.7 Substitutional Approaches to Surface
Functionalization ..................................... 167
6.8 Building on an Oxide Layer ............................ 168
6.9 How Many Surface Groups are on the Particle? .......... 169
6.10 Influence of Surface Chemistry ........................ 172
6.11 Future Outlook and the Role of Surface Chemistry ...... 172
References ............................................ 172
7 Si-nc in Astrophysics ...................................... 173
Ingrid Mann ................................................ 173
7.1 Introduction .......................................... 173
7.2 Late Stellar Evolution ................................ 174
7.3 Interstellar Medium and Dust Evolution ................ 177
7.4 Early Stellar Evolution and Planetary System
Formation ............................................. 182
7.5 Dust in the Solar System .............................. 183
7.6 Extended Red Emission and Si Nanoparticles as
a Potential Carrier ................................... 184
7.7 Formation of Si Nanoparticles under Nonequilibrium
Conditions ............................................ 189
7.8 Conclusions ........................................... 192
References ............................................ 192
8 Size-Controlled Si Nanocrystals using the SiO/SiO2
Superlattice Approach: Crystallization, Defects, and
Optical Properties ......................................... 195
Margit Zacharias
8.1 Introduction .......................................... 195
8.2 Size Control of Si Nanocrystals by the SiO/SiO2
Superlattice Approach ................................. 196
8.3 Crystallization Behavior .............................. 200
8.4 Defects and their Signatures in ESR ................... 206
8.5 Optical Properties .................................... 215
8.6 Applications of Si NCs and Concluding Remarks ......... 219
References ............................................ 220
9 The Synthesis of Silicon Nanocrystals by Ion
Implantation ............................................... 223
Robert Elliman
9.1 Introduction .......................................... 223
9.2 Ion Implantation ...................................... 224
9.3 Spatial Distribution .................................. 226
9.3.1 Ion Range Distributions ........................ 226
9.3.2 Multiple Energy Implants ....................... 229
9.3.3 High-Fluence Effects ........................... 230
9.3 A Lateral Patterning ................................. 231
9.4 Size Distribution ..................................... 231
9.4.1 Annealing Temperature and Time ................. 232
9.4.1.1 Nucleation and Growth of
Nanocrystals .......................... 232
9.4.2 Spinodal Decomposition ......................... 235
9.4.3 Effect of Surfaces and Interfaces .............. 236
9.4.4 Hot Implants ................................... 236
9.4.5 Annealing Ambient .............................. 237
9.5 Irradiation Effects ................................... 237
9.5.1 Radiation Damage ............................... 238
9.5.2 Ion-Beam Mixing ................................ 239
9.5.3 Irradiation-Induced Precipitation .............. 240
9.6 Novel Structures and Applications ..................... 241
9.6.1 Alloying and Doping ............................ 241
9.6.2 Choice of Substrate Material ................... 241
9.6.3 Light-Emitting Diodes .......................... 242
9.6.4 Waveguides and All-Optical Amplifiers .......... 242
9.6.5 Nonvolatile Memory ............................. 243
9.6.6 Microdisk Resonators and Lasers ................ 243
9.6.7 Photonic Crystal Structures .................... 243
9.7 Summary ............................................... 244
References ............................................ 244
10 Structural and Optical Properties of Silicon Nanocrystals
Synthesized by Plasma Enhanced Chemical Vapor Deposition ... 247
Fabio lacona, Ciorgia Franzo, Alessia Irrera, Simona
Boninelli, and Francesco Priolo
10.1 Introduction .......................................... 247
10.2 Synthesis, Structure, and Thermal Evolution of SiOx
Films ................................................. 249
10.3 A Deeper Insight into the Thermal Evolution of SiOx
Films ................................................. 253
10.4 Room-Temperature PL Properties of Si-ncs .............. 258
10.5 Excitation and De-Excitation Properties of Si-ncs ..... 260
10.6 Correlation between Structural and Optical
Properties of Si-ncs .................................. 264
10.7 Er-Doped Si Nanoclusters .............................. 267
10.8 Summary ............................................... 271
References ............................................ 272
11 Formation of Si-nc by Reactive Magnetron Sputtering ........ 275
F. Gourbilleau, С. lemon, C. Dufour, X. Portier, and
R. Rizk
11.1 Introduction .......................................... 275
11.2 Experimental .......................................... 276
11.3 Results ............................................... 276
11.3.1 Single Layer ................................... 277
11.3.2 Composite Layer ................................ 279
11.3.3 Multilayer ..................................... 283
11.3.3.1 Effect of the Sublayer Thickness ...... 284
11.3.3.2 Effect of the Annealing Temperature ... 287
11.4 Conclusion ............................................ 292
References ............................................ 292
12 Si and SiC Nanocrystals by Pyrolysis of Sol-Gel-Derived
Precursors ................................................. 297
Aylin Karakuscu and Cian Domenico Soraru
12.1 The Sol-Gel and PDC Processes ......................... 298
12.2 Si nc/SiO2 Glasses and Films .......................... 300
12.3 (Si-nc + SiC-nc)/SiO2 Glasses and Films 302
12.4 Optical properties of Multicomponent Si-C-O-N
Ceramics .............................................. 305
References ............................................ 306
13 Nonthermal Plasma Synthesis of Silicon Nanocrystals ........ 309
Lorenzo Mangolini and Uwe Kortshagen
13.1 Introduction .......................................... 309
13.2 Basics of Nanocrystal Formation in Plasmas ............ 310
13.2.1 Nanoparticle Nucleation in Nonthermal
Plasmas ........................................ 310
13.2.2 Nanoparticle Charging .......................... 312
13.2.3 Nanoparticle Heating in Plasmas ................ 314
13.3 Silicon Nanocrystal Synthesis in Nonthermal Plasmas ... 317
13.3.1 Experimental Apparatus ......................... 318
13.3.2 Nanocrystal Characterization ................... 320
13.3.2.1 ТЕМ Characterization .................. 320
13.3.2.2 Particle Size Distribution ............ 320
13.3.2.3 Nanocrystal Surface Conditions ........ 322
13.3.2.4 Optical Properties of Surface-
Oxidized Silicon Nanocrystals ......... 326
13.4 Surface Functionalization of Silicon Nanocrystals ..... 327
13.4.1 Liquid-Phase Functionalization ................. 327
13.4.2 Liquid-Phase Hydrosilylation Procedure ......... 328
13.4.3 Plasma Grafting of Silicon Nanocrystals ........ 330
13.5 Optical Properties of Plasma-Synthesized and
Surface-Functionalized Silicon Nanocrystals ........... 337
13.6 Summary and Conclusions ............................... 341
References ............................................ 342
14 Silicon Nanocrystals in Porous Silicon and Applications .... 349
Bernard Celloz
14.1 Introduction .......................................... 349
14.2 Preparation of Porous Si Layers ....................... 350
14.2.1 Porous Si Prepared by Anodization .............. 350
14.2.1.1 Conditions Leading to Porous Si
Formation ............................. 350
14.2.1.2 Porous Si Formation Mechanism ......... 351
14.2.1.2.1 Electrochemical Etching
of Si ...................... 351
14.2.1.2.2 Pore Initiation and
Propagation in
Microporous Si ............. 352
14.2.1.3 Effect of Anodization Conditions ...... 352
14.2.1.4 Local Formation and Patterning of
Porous Si ............................. 354
14.2.1.5 Anodization Cells ............ 355
14.2.2 Formation of Porous Si Without External Power
Supply ......................................... 355
14.2.2.1 Galvanic Etching ...................... 355
14.2.2.2 Electroless Etching ................... 356
14.2.3 Drying of Porous Si ............................ 357
14.3 Structural Properties of As-Formed and Modified
Porous Si ............................................. 358
14.3.1 As-Formed Porous Si ............................ 358
14.3.2 Oxidation of Porous Si ......................... 359
14.3.3 Stabilization of the Porous Si Surface ......... 359
14.4 Physical Properties and Applications of Porous Si ..... 360
14.4.1 Electrical Properties .......................... 360
14.4.1.1 Electrical Conduction and Transport ... 360
14.4.1.2 Electro-Optic Memory .................. 361
14.4.1.3 Sensing Based on Change of
Conductivity .......................... 361
14 A.1.4 Photodetection ........................ 362
14.4.1.5 Ballistic Transport and
Applications .......................... 362
14.4.1.5.1 Ballistic Electron
Emission ................... 362
14.4.1.5.2 Application as Flat Panel
Displays ................... 364
14.4.1.5.3 Ballistic Electron
Emission in Gas and
Liquids .................... 364
14.4.2 Photonics ...................................... 365
14.4.2.1 Refractive Index and Absorption
Coefficient ........................... 365
14.4.2.2 Passive Photonic Structures ........... 366
14.4.2.2.1 Waveguides ................. 367
14.4.2.2.2 Manipulation of Light
Using Index Modulation ..... 367
14.4.2.3 Active Photonic Structures:
Switching, Sensing .................... 371
14.4.2.3.1 Optical Switching .......... 371
14.4.2.3.2 Optical Gas/Liquid/
Biomolecule Sensing and
Drug Delivery .............. 371
14.4.2.3.3 Nonlinear Properties ....... 372
14.4.3 Luminescence ................................... 372
14.4.3.1 Photoluminescence ..................... 372
14.4.3.1.1 Characteristics of the
S-Band ..................... 372
14.4.3.1.2 Photoluminescence
Efficiency ................. 374
14.4.3.1.3 Photoluminescence
Stabilization .............. 376
14.4.3.2 Energy Transfer, Sensing, and
Imaging Using Porous Si
Photoluminescence ..................... 376
14.4.3.3 Electroluminescence ................... 377
14.4.4 Acoustic and Thermal Properties ................ 379
14.4.4.1 Acoustic Properties and Acoustic
Band Crystals ......................... 379
14.4.4.1.1 Acoustic Properties of
Porous Si .................. 379
14.4.4.1.2 Acoustic Band Crystals ..... 379
14.4.4.2 Thermoacoustic Emission ............... 380
14.5 Conclusions ........................................... 381
References ............................................ 381
15 Silicon Nanocrystal Flash Memory ........................... 395
Shunri Oda and Shaoyun Huang
15.1 Introduction .......................................... 395
15.1.1 Challenges in Silicon Flash Memory
Technology ..................................... 395
15.1.2 Emerging nc-Si Flash Memory Devices ............ 397
15.1.3 Outline ........................................ 398
15.2 Structure of nc-Si Flash Memory ....................... 399
15.2.1 nc-Si Memory Structures ........................ 399
15.2.2 Representative nc-Si Memory Structures ......... 401
15.2.2.1 Storing Charges with Multiple nc-Si
Dots .................................. 401
15.2.2.2 Storing Charges with Single nc-Si
Dot ................................... 402
15.2.3 Summary ........................................ 404
15.3 Fabrication Methodologies ............................. 404
15.3.1 Fabrication of nc-Si Dots ...................... 404
15.3.1.1 Тор-Down Methodology .................. 405
15.3.1.2 Bottom-Up Methodology ................. 405
15.3.2 Memory Cell Fabrications ....................... 407
15.3.3 Summary ........................................ 410
15.4 Characteristics of nc-Si Flash Memory ................. 410
15.4.1 Memory Operations .............................. 411
15.4.2 Interfacial States ............................. 414
15.4.3 Retention Characteristics with Electron
Charge, Storage, and Discharge ................. 417
15.4.4 Characteristics Improvements of the nc-Si
Flash Memory ................................... 420
15.4.5 Operation Speed and Device Reliability ......... 431
15.4.6 Summary ........................................ 434
15.5 Comparisons of Emerging Nonvolatile Memory Devices .... 434
15.5.1 Silicon Nanocrystals Flash Memory and Other
Types of Nonvolatile Memory .................... 435
15.5.2 Silicon Nanocrystals Memory Devices and Other
Quantum Dot Memory Devices ..................... 436
15.5.3 Summary ........................................ 437
15.6 Concluding Remarks and Prospects ...................... 437
References ............................................ 438
16 Photonics Application of Silicon Nanocrystals .............. 445
A. Anopchenko, N. Daldosso, R. Guider, D. Navano-Umos,
A. Pitanti, R. Spano, Zhizhong Yuan, and L. Pavesi
16.1 Introduction to Silicon Nanophotonics ................. 445
16.2 Nanosilicon Waveguides and Resonators ................. 447
16.2.1 General Properties ............................. 447
16.2.2 Si-nc Slot Waveguides .......................... 450
16.2.3 Ring Resonators Based on Slot Waveguides ....... 451
16.3 Nanosilicon Cavity-Based Devices ...................... 453
16.3.1 Slow-Wave Devices .............................. 454
16.3.2 Si-nc Active Microdisks ........................ 456
16.4 Si-nc-Based Visible Optical Amplifiers ................ 457
16.5 Nanosilicon-Based Infrared Optical Amplifiers ......... 461
16.6 Nanosilicon-Based LED and Solar Cells ................. 465
16.6.1 Si-nc-Based LED ................................ 465
16.6.2 Si-nc-Based Solar Cells ........................ 469
16.7 Nanosilicon Nonlinear Optical Properties and
Devices ............................................... 473
16.8 Conclusions ........................................... 477
References ............................................ 477
17 Lighting Applications of Rare Earth-Doped Silicon Oxides ... 487
T. Roschuk, J. Li, J. Wojcik, P. Mascher, and I. Calder
17.1 Solid-State Lighting: A Basic Introduction ............ 488
17.2 Luminescence of Rare Earth-Doped Silicon-Based
Materials ............................................. 490
17.3 White Light Emitting Si-Based Device Structures ....... 501
17.4 Fabrication of RE-Doped Silicon-Based Layers for
SSL ................................................... 503
17.5 Conclusions and Future Outlook ........................ 504
References ............................................ 505
18 Biomedical and Sensor Applications of Silicon
Nanoparticles .............................................. 507
E. Borsella, M. Falconieri, N. Herlin, V. Loschenov,
C. Miserocchi, Y. Nie, I. Rivolta, A. Ryabova, and
D. Wang
18.1 Introduction .......................................... 507
18.2 Synthesis and Surface Engineering of Si
Nanoparticles for Bioapplications ..................... 509
18.2.1 Synthesis and Optical Properties of Si
Nanoparticles .................................. 509
18.2.2 Surface Functionalization of Luminescent Si
NPs for Bioapplications ........................ 512
18.2.2.1 Alkali-Acid Etching of Si NPs ......... 512
18.2.2.2 Surface Modification of Si NPs by
Silanization .......................... 513
18.2.2.3 Surface Modification of Si NPs via
Hydrosilylation ....................... 514
18.3 Biointeraction of Si-Based Nanoparticles .............. 516
18.3.1 Cell Viability ................................. 517
18.3.2 Geno toxicity .................................. 518
18.3.3 Overall Cell Monolayer Electrical Resistance ... 519
18.3.4 Effect of NP Size .............................. 519
18.3.5 In Vitro and In Vivo Comparative Studies ....... 523
18.3.6 Exposure Risks ................................. 524
18.4 Applications of Si NPs in Biomedicine ................. 524
18.5 Si Nanoparticle-Based Sensors ......................... 530
18.6 Conclusions ........................................... 531
References ............................................ 532
19 Nanosilicon-Based Explosives ............................... 537
D. Clement and D. Kovalev
19.1 Introduction .......................................... 537
19.2 Properties and Applications of Porous Silicon and
Its Compounds as Energetic Materials .................. 538
19.2.1 Production of Porous Silicon ................... 538
19.2.2 Stabilization of Porous Silicon Surface ........ 542
19.3 Reaction Properties of Porous Silicon with
Oxidizers ............................................. 545
19.3.1 Infiltration of the Pores with Different
Oxidizers ...................................... 545
19.3.2 Mechanical Mixing of Porous Silicon Powder
with Oxidizers ................................. 552
19.4 Conclusions ........................................... 553
References ............................................ 554
20 Applications of Si Nanocrystals in Photovoltaic Solar
Cells ...................................................... 555
Gavin Conibeer
20.1 Introduction: Reasons for Application to Solar
Cells ................................................. 555
20.1.1 Limits of Single-Вandgap Cells ................. 555
20.1.2 Solar Cells with Multiple Energy Levels ........ 556
20.2 Properties of Si Nanocrystals Relevant to Solar
Cells ................................................. 557
20.2.1 Solid-Phase Formation of Si Nanocrystals ....... 557
20.2.2 Quantum Confinement in Si QD Nanostructures .... 559
20.2.3 Carrier Tunneling Transport in Si QD
Superlattices .................................. 562
20.3 The "All-Si" Tandem Cell: Si Nanostructure Tandem
Cells ................................................. 563
20.3.1 Alternative Matrices for Si QDs ................ 564
20.3.1.1 Si Quantum Dots in a Silicon Nitride
Matrix ................................ 564
20.3.1.2 Silicon QD Nanocrystals Embedded in
Silicon Carbide Matrix ................ 566
20.3.2 Doping of Si QD Arrays ......................... 566
20.3.2.1 Phosphorus Doping of Si
Nanostructures ........................ 567
20.3.2.2 Boron Doping of Si Nanostructures ..... 568
20.3.2.3 Doping Mechanisms ..................... 569
20.3.3 Fabrication of Si QD PV Devices ................ 570
20.3.3.1 Si QDs in SiO2 Solar Cell ............. 570
20.3.3.2 Si QDs in SiC Solar Cell .............. 571
20.4 Intermediate Level Cells: Intermediate Band and
Impurity Photovoltaic cell ............................ 572
20.5 Multiple Carrier Excitation Using Si QDs .............. 573
20.6 Hot Carrier Cells ..................................... 574
20.6.1 Photoluminescence of Si QD ESCs ................ 575
20.6.2 Negative Differential Resistance in Si QD
ESCs ........................................... 577
20.6.3 A Complete Hot Carrier Cell .................... 578
20.7 Conclusions ........................................... 578
References ............................................ 579
21 Characterization of Si Nanocrystals ........................ 583
S. Yerci, I. Dogan, A. Seyhan, A. Cencer, and R. Turan
21.1 Introduction .......................................... 583
21.2 Imaging ............................................... 584
21.2.1 Si Nanocluster Imaging by Transmission
Electron Microscopy Techniques .............. 584
21.2.2 Transmission Electron Microscopy ............... 584
21.2.3 Electron Energy Loss Spectroscopy .............. 585
21.2.4 Energy Filtered Transmission Electron
Microscopy (EFTEM) ............................. 587
21.2.5 Si Nanocluster Imaging by Atomic Force
Microscopy ..................................... 588
21.3 Identification and Quantification of Nanocrystals ..... 590
21.3.1 Raman Spectroscopy ............................. 590
21.3.2 Identification of the Nanocrystals ............. 591
21.3.3 Size Estimation of the Nanocrystals ............ 591
21.3.4 Stress Estimation on Nanocrystals .............. 593
21.3.5 Phase Determination of the Nanocrystals ........ 594
21.3.6 X-Ray Diffraction Analysis of Nanocrystals ..... 594
21.3.7 Method of Integral Breadths .................... 597
21.3.8 Method of Warren-Abervach ...................... 598
21.3.9 X-Ray Photoelectron Spectroscopy ............... 598
21.4 Looking at the Nanocluster's Surrounding .............. 602
21.4.1 Fourier Transform Infrared Spectroscopy ........ 602
21.5 Optical Techniques .................................... 606
21.5.1 Photoluminescence Spectroscopy ................. 606
References ............................................ 609
Index ......................................................... 613
|