Semiconductor disk lasers: physics and technology (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSemiconductor disk lasers: physics and technology / ed. by O.G. Okhotnikov. - Weinheim: Wiley-VCH, 2010. - xv, 314 p.: ill. (some col.). - Bibliogr. at the end of the chapters. - Ind.: p.305-314. - ISBN 978-3-527-40933-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ XI
List of Contributors ......................................... XIII

1  VECSEL Semiconductor Lasers: A Path to High-Power,
   Quality Beam and UV to IR Wavelength by Design ............... 1
   Mark Kuznetsov
   1.1  Introduction ............................................ 1
   1.2  What Are VECSEL Semiconductor Lasers .................... 2
        1.2.1  History of VECSELs: Semiconductor Lasers,
               Optical Pumping, and External Cavity ............. 2
        1.2.2  Basic Principles of Operation: VECSEL Structure
               and Function ..................................... 6
        1.2.3  Basic Properties of VECSEL Lasers: Power
               Scaling, Beam Quality, and Intracavity Optical
               Elements ......................................... 9
               1.2.3.1  Power Scaling ........................... 9
               1.2.3.2  Beam Quality ........................... 10
               1.2.3.3  Laser Functional Versatility Through
                        Intracavity Optical Elements ........... 11
        1.2.4  VECSEL Wavelength Versatility Through
               Materials and Nonlinear Optics .................. 12
               1.2.4.1  Wavelength Versatility Through
                        Semiconductor Materials and
                        Structures ............................. 12
               1.2.4.2  Wavelength Versatility Through
                        Nonlinear Optical Conversion ........... 14
   1.3  How Do You Make a VECSEL Laser ......................... 16
        1.3.1  Semiconductor Gain Medium and On-Chip Bragg
               Mirror .......................................... 16
               1.3.1.1  Semiconductor Gain Design for
                        VECSELs ................................ 16
               1.3.1.2  On-Chip Multilayer Laser Bragg
                        Mirror ................................. 21
               1.3.1.3  Semiconductor Wafer Structure .......... 22
        1.3.2  Optical Cavity: Geometry, Mode Control, and
               Intracavity Elements ............................ 24
        1.3.3  Optical and Electrical Pumping .................. 29
        1.3.4  VECSEL Laser Characterization ................... 33
   1.4  Demonstrated Performance of VECSELs and Future
        Directions ............................................. 38
        1.4.1  Demonstrated Power Scaling and Wavelength
               Coverage ........................................ 38
        1.4.2  Commercial Applications ......................... 45
        1.4.3  Current and Future Research Directions .......... 48
        1.4.4  Future of VECSEL Lasers: Scalable Power with
               Beam Quality from UV to IR ...................... 54
   References .................................................. 57
2  Thermal Management, Structure Design, and Integration
   Considerations for VECSELs .................................. 73
   Stephane Calvez, Jennifer E. Hastie, Alan J. Kemp,
   Nicolas Laurand, and Martin D. Dawson
   2.1  Introduction ........................................... 73
   2.2  VECSEL Structure Design ................................ 74
        2.2.1  Material System Selection ....................... 74
        2.2.2  Gain ............................................ 76
        2.2.3  Mirrors ......................................... 79
        2.2.4  Subcavity Designs ............................... 80
        2.2.5  Growth .......................................... 81
        2.2.6  Structure Characterization ...................... 82
        2.2.7  Laser Cavity .................................... 83
   2.3  Thermal Management ..................................... 84
        2.3.1  Introduction: Why Is Thermal Management
               Important? ...................................... 84
        2.3.2  Thermal Management Strategies in VECSELs ........ 85
        2.3.3  Modeling of Heat Flow in VECSELs: Guidelines .... 87
        2.3.4  The Thin Device and Heat Spreader Approaches
               at 1 and 2 μm ................................... 87
        2.3.5  Important Parameters: The Thermal Conductivity
               of the Mirror Structure, Submount, and Heat
               Spreader ........................................ 89
        2.3.6  Power Scaling of VECSELs ........................ 91
        2.3.7  Wavelength Versatility .......................... 94
   2.4  Laser Performance and Results .......................... 96
        2.4.1  Power ........................................... 96
        2.4.2  Efficiency ..................................... 100
        2.4.3  Tuning ......................................... 103
   2.5  Integration ........................................... 105
        2.5.1  Microchip ...................................... 105
        2.5.2  Pump Integration ............................... 107
        2.5.3  Fiber-Tunable VECSELs .......................... 109
   2.6  Conclusions ........................................... 111
        References ............................................ 111

3  Red Semiconductor Disk Lasers by Intracavity Frequency
   Conversion ................................................. 119
   Oleg Okhotnikov and Mircea Guina
   3.1  I ntroduction ......................................... 119
   3.2  SDL with Frequency Doubling ........................... 121
        3.2.1  General Principle of Frequency Doubling ........ 121
        3.2.2  Power Scaling of SDLs .......................... 124
   3.3  SDL Frequency Doubled to Red .......................... 126
        3.3.1  Dilute Nitride Heterostructures for 1.2 μm
               Light Emission ................................. 127
        3.3.2  Plasma-Assisted MВЕ Growth of Dilute
               Nitrides ....................................... 128
        3.3.3  Design and Characteristics of Dilute Nitride
               Gain Media ..................................... 130
        3.3.4  Performance of 1220 nm SDL ..................... 133
        3.3.5  SDL Intracavity Light Conversion to Red-
               Orange ......................................... 136
   3.4  Conclusions ........................................... 139
        References ............................................ 139

4  Long-Wavelength GaSb Disk Lasers ........................... 143
   Benno Rösener, Marcel Rattunde, John-Mark Hopkins,
   David Burns, and Joachim Wagner
   4.1  Introduction .......................................... 143
   4.2  The Ш-Sb Material System .............................. 144
   4.3  Epitaxial Layer Design and Growth of III-Sb Disk
        Laser Structures ...................................... 146
        4.3.1  Basic Structural Layout ........................ 147
        4.3.2  Sample Growth and Post-Growth Analysis ......... 149
        4.3.3  Epitaxial Design of In-Well-Pumped SDLs ........ 153
        4.3.4  Sb-Based Active Regions on GaAs/AlGaAs DBRs .... 155
   4.4  High-Power 2.X μm Disk Lasers ......................... 157
        4.4.1  Initial Experiments ............................ 157
        A.4.2  Sb-Based SDLs Using Intracavity Heat
               Spreaders ...................................... 158
        4.4.3  In-Well-Pumped Sb-Based Semiconductor Disk
               Lasers ......................................... 163
        4.4.4  Sb-Based Semiconductor Disk Lasers on GaAs
               Substrates ..................................... 166
   4.5  Tunable, Single-Frequency Lasers ...................... 167
        4.5.1  Tunability ..................................... 168
        4.5.2  Single-Frequency Operation ..................... 172
        4.5.3  Experimental Results of a 2.3 μm Single-
               Frequency SDL .................................. 176
   4.6  Disk Lasers At and Above 3 μm Wavelength .............. 179
   4.7  Conclusions ........................................... 179
        References ............................................ 181

5  Semiconductor Disk Lasers Based on Quantum Dots ............ 187
   Udo W. Pohl and Dieter Bimberg
   5.1  Introduction .......................................... 187
   5.2  Size Quantization in Optical Gain Media ............... 187
        5.2.1  Quantum Dots in Lasers ......................... 189
        5.2.2  Species of Quantum Dots ........................ 191
        5.2.3  Energies of Confined Charge Carriers ........... 191
        5.2.4  Quantum Dot Lasers ............................. 196
               5.2.4.1  Edge-Emitting Quantum Dot Lasers ...... 196
               5.2.4.2  Surface-Emitting Quantum Dot Lasers ... 198
   5.3  Development of Disk Lasers Based on Quantum Dots ...... 200
        5.3.1  Concepts of Gain Structures .................... 200
        5.3.2  Adjustment of Quantum Dot Emission
               Wavelength ..................................... 202
               5.3.2.1  Tuning of Stranski-Krastanow Quantum
                        Dots .................................. 203
               5.3.2.2  Tuning of Submonolayer Quantum Dots ... 204
        5.3.3  Characteristics of Quantum Dot Disk Lasers ..... 205
               5.3.3.1  Disk Lasers with Stranski-Krastanow
                        Quantum Dots .......................... 205
               5.3.3.2  Disk Lasers with Submonolayer
                        Quantum Dots .......................... 207
   5.4  Conclusions ........................................... 207
        References ............................................ 208

6  Mode-Locked Semiconductor Disk Lasers ...................... 213
   Thomas Südmeyer, Deran J.H.C Maas, and Ursula Keller
   6.1  Introduction .......................................... 213
        6.1.1  Ultrafast Lasers ............................... 213
        6.1.2  Ultrafast Semiconductor Lasers ................. 215
        6.1.3  Application Areas .............................. 216
   6.2  SESAM Mode Locking of Semiconductor Disk Lasers ....... 219
        6.2.1  Macroscopic Key Parameters of a SESAM .......... 220
               6.2.1.1  Nonlinear Optical Reflectivity ........ 220
               6.2.1.2  Temporal SESAM Response ............... 225
        6.2.2  Pulse Formation ................................ 227
               6.2.2.1  Model for the Pulse Shaping ........... 229
               6.2.2.2  Mode-Locking Stability and the
                        Importance of Gain and SESAM
                        Saturation ............................ 231
               6.2.2.3  Importance of Group Delay
                        Dispersion ............................ 232
        6.2.3  SESAM Designs .................................. 233
               6.2.3.1  SESAM Structure for Field
                        Enhancement Control ................... 233
               6.2.3.2  Comparison of Quantum Well and
                        Quantum Dot SESAMs .................... 236
   6.3  Mode Locking Results .................................. 239
        6.3.1  Introduction ................................... 239
        6.3.2  Mode-Locked VECSELs with High Average Output
               Power .......................................... 240
               6.3.2.1  Power Scaling of Mode-Locked
                        VECSELs ............................... 240
               6.3.2.2  Experimental Results .................. 242
               6.3.2.3  Outlook ............................... 243
        6.3.3  VECSEL Mode Locking at High Repetition Rates ... 244
               6.3.3.1  Mode Locking with Similar Area on
                        Gain and Absorber (1:1 Mode
                        Locking) .............................. 245
               6.3.3.2  Mode-Locked VECSELs with up to 50
                        GHz ................................... 245
               6.3.3.3  Outlook ............................... 246
        6.3.4  Femtosecond Mode-Locked VECSELs ................ 246
               6.3.4.1  Introduction .......................... 246
               6.3.4.2  Mode Locking Results .................. 247
        6.3.5  Electrically Pumped Mode-Locked VECSELs ........ 247
   6.4  Mode-Locked Integrated External-Cavity Surface-
        Emitting Laser (MIXSEL) ............................... 248
        6.4.1  Introduction ................................... 248
        6.4.2  Integration Challenges ......................... 249
        6.4.3  Results ........................................ 251
        6.4.4  Outlook ........................................ 252
   6.5  Summary and Outlook ................................... 254
        References ............................................ 256

7  External-Cavity Surface-Emitting Diode Lasers .............. 263
   Aram Mooradian, Andrei Shchegrov, Ashish Tandon, and
   Gideon Yoffe
   7.1  Introduction .......................................... 263
   7.2  Device Design and Performance ......................... 264
   7.3  Mode Control, Cavity Design, and Thermal Lensing ...... 270
   7.4  High-Power Arrays and Multielement Devices ............ 274
        7.4.1  Design of the Chip ............................. 276
   7.5  Carrier Dynamics ...................................... 286
        7.5.1  Mode Locking ................................... 287
   7.6  Nonlinear Optical Conversion with Surface-Emitting
        Diode Lasers: Design and Performance .................. 287
        7.6.1  Visible Laser Sources: Applications and
               Requirements ................................... 287
        7.6.2  Cavity Design Optimization and Trade-Offs for
               Second Harmonic Generation with Surface-
               Emitting Diode Lasers .......................... 289
        7.6.3  Nonlinear Crystals Used in Intracavity
               Frequency Conversion ........................... 291
        7.6.4  Low-Noise, High Mode Quality, Continuous-
               Wave Visible Laser Sources for
               Instrumentation Applications ................... 294
        7.6.5  Compact Visible Sources Scalable to Array
               Architecture ................................... 297
   References ................................................. 301

Index ......................................................... 305


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:30 2019. Размер: 18,456 bytes.
Посещение N 2215 c 12.10.2010