Pettini M. Geometry and topology in Hamiltonian dynamics and statistical mechanics (New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPettini M. Geometry and topology in Hamiltonian dynamics and statistical mechanics. - New York: Springer, 2007. - xvi, 451 p.: ill. - (Interdisciplinary applied mathematics; Vol.33). - Ref.: p.431-439. - Auth. ind.: p.441. - Sub. ind.: p.443-451. - ISBN 978-0-387-30892-0
 

Оглавление / Contents
 
Foreword ...................................................... VII

Preface ........................................................ IX

1  Introduction ................................................. 1

2  Background in Physics ....................................... 17
   2.1  Statistical Mechanics .................................. 18
        2.1.1  Invariant Measure for the Dynamics .............. 19
        2.1.2  Invariant Measure Induced on ∑E ................. 22
        2.1.3  The Irreversible Approach to Equilibrium. The 
               Zeroth Law of Thermodynamics .................... 23
        2.1.4  Ergodicity ...................................... 26
        2.1.5  From Micro to Macro: The Link with 
               Thermodynamics .................................. 29
        2.1.6  Phase Transitions ............................... 38
   2.2  Hamiltonian Dynamics ................................... 55
        2.2.1  Perturbative Results for Quasi-integrable 
               Systems ......................................... 55
        2.2.2  Hamiltonian Chaos ............................... 61
        2.2.3  Lyapunov Exponents .............................. 70
   2.3  Dynamics and Statistical Mechanics ..................... 77
        2.3.1  Numerical Hamiltonian Dynamics at Large N ....... 79
        2.3.2  Numerical Investigation of Phase Transitions .... 90

3  Geometrization of Hamiltonian Dynamics ..................... 103
   3.1  Geometric Formulation of the Dynamics ................. 103
        3.1.1  Jacobi Metric on Configuration Space M ......... 104
        3.1.2  Eisenhart Metric on Enlarged Configuration 
               Space M × fig.7 .................................... 108
        3.1.3  Eisenhart Metric on Enlarged Configuration
               Space-Time M × fig.72 .............................. 110
   3.2  Finslerian Geometrization of Hamiltonian Dynamics ..... 112
   3.3  Sasaki Lift on TM ..................................... 115
   3.4  Curvature of the Mechanical Manifolds ................. 117
   3.5  Curvature and Stability of a Geodesic Flow ............ 120
        3.5.1  Concluding Remark .............................. 126

4  Integrability .............................................. 129
   4.1  Introduction .......................................... 129
   4.2  Killing Vector Fields ................................. 131
   4.3  Killing Tensor Fields ................................. 133
   4.4  Explicit KTFs of Known Integrable Systems ............. 135
        4.4.1  Nontrivial Integrable Models ................... 136
        4.4.2  The Special Case of the N = 2 Toda Model ....... 138
        4.4.3  The Generalized Henon Heiles Model ............. 140
   4.5  Open Problems ......................................... 142

5  Geometry and Chaos ......................................... 145
   5.1  Geometric Approach to Chaotic Dynamics ................ 145
   5.2  Geometric Origin of Hamiltonian Chaos ................. 147
   5.3  Effective Stability Equation in the High-Dimensional 
        Case .................................................. 150
        5.3.1  A Geometric Formula for the Lyapunov
               Exponent ....................................... 155
   5.4  Some Applications ..................................... 159
        5.4.1  FPU β Model .................................... 161
        5.4.2  The Role of Unstable Periodic Orbits ........... 165
        5.4.3  ID XY Model .................................... 171
        5.4.4  Mean-Field XY Model ............................ 177
   5.5  Some Remarks .......................................... 181
        5.5.1  Beyond Quasi-Isotropy: Chaos and Nontrivial
               Topology ....................................... 183
   5.6  A Technical Remark on the Stochastic Oscillator
        Equation .............................................. 185

6  Geometry of Chaos and Phase Transitions .................... 189
   6.1  Chaotic Dynamics and Phase Transitions ................ 190
   6.2  Curvature and Phase Transitions ....................... 196
        6.2.1  Geometric Estimate of the Lyapunov Exponent .... 200
   6.3  The Mean-Field XY Model ............................... 200

7  Topological Hypothesis on the Origin of Phase 
   Transitions ................................................ 203
   7.1  From Geometry to Topology: Abstract Geometric
        Models ................................................ 204
   7.2  Topology Changes in Configuration Space and Phase 
        Transitions ........................................... 207
   7.3  Indirect Numerical Investigations of the Topology
        of Configuration Space ................................ 208
   7.4  Topological Origin of the Phase Transition in the 
        Mean-Field XY Model ................................... 214
   7.5  The Topological Hypothesis ............................ 218
   7.6  Direct Numerical Investigations of the Topology
        of Configuration Space ................................ 220
        7.6.1  Monte Carlo Estimates of Geometric Integrals ... 222
        7.6.2  Euler Characteristic for the Lattice Ø4 
               Model .......................................... 224

8  Geometry, Topology and Thermodynamics ...................... 229
   8.1  Extrinsic Curvatures of Hypersurfaces ................. 232
        8.1.1  Two Useful Derivation Formulas ................. 235
   8.2  Geometry, Topology and Thermodynamics ................. 237
        8.2.1  An Alternative Derivation ...................... 242

9  Phase Transitions and Topology: Necessity Theorems ......... 245
   9.1  Basic Definitions ..................................... 249
   9.2  Main Theorems: Theorem 1 .............................. 254
   9.3  Proof of Lemma 2, Smoothness of the Structure 
        Integral .............................................. 258
   9.4  Proof of Lemma 9.18, Upper Bounds ..................... 259
        9.4.1  Part A ......................................... 262
        9.4.2  Part В ......................................... 269
   9.5  Main Theorems: Theorem 2 .............................. 281

10 Phase Transitions and Topology: Exact Results .............. 297
   10.1 The Mean-Field XY Model ............................... 298
        10.1.1  Canonical Ensemble Thermodynamics ............. 298
        10.1.2  Microcanonical Ensemble Thermodynamics ........ 300
        10.1.3  Analytic Computation of the Euler 
                Characteristic ................................ 302
   10.2 The One-Dimensional XY Model .......................... 309
        10.2.1 The Role of the External Field h ............... 314
   10.3 Two-Dimensional Toy Model of Topological Changes ...... 315
   10.4 Technical Remark on the Computation of the Indexes
        of the Critical Points ................................ 318
        10.4.1 Mean-Field XY Model ............................ 318
        10.4.2 One-Dimensional XY Model ....................... 323
   10.5 The fc-Trigonometric Model ............................ 325
        10.5.1 Canonical Ensemble Thermodynamics .............. 327
        10.5.2 Microcanonical Thermodynamics .................. 332
        10.5.3 Topology of Configuration Space ................ 335
        10.5.4 Topology of the Order Parameter Space .......... 340
   10.6 Comments on Other Exact Results ....................... 342

11 Future Developments ........................................ 347
   11.1 Theoretical Developments .............................. 348
   11.2 Transitional Phenomena in Finite Systems .............. 351
   11.3 Complex Systems ....................................... 352
   11.4 Polymers and Proteins ................................. 353
   11.5 A Glance at Quantum Systems ........................... 358

Appendix A: Elements of Geometry and Topology of 
Differentiable Manifolds ...................................... 361
   A.l  Tensors ............................................... 361
        A.1.1  Symmetrizer and Antisymmetrizer ................ 364
   A.2  Grassmann Algebra ..................................... 365
   A.3  Differentiable Manifolds .............................. 367
        A.3.1  Topological Spaces ............................. 367
        A.3.2  Manifolds ...................................... 368
   A.4  Calculus on Manifolds ................................. 370
        A.4.1  Vectors ........................................ 371
        A.4.2  Flows and Lie Derivatives ...................... 373
        A.4.3  Tensors and Forms on Manifolds ................. 374
        A.4.4  Exterior Derivatives ........................... 378
        A.4.5  Interior Product ............................... 379
        A.4.6  Integration of Forms on Manifolds .............. 380
   A.5  The Fundamental Group ................................. 381
   A.6  Homology and Cohomology ............................... 385
        A.6.1  Homology Groups ................................ 385
        A.6.2  Cohomology Groups .............................. 389
        A.6.3  Betti Numbers .................................. 393

Appendix B: Elements of Riemannian Geometry ................... 397
   B.l  Riemannian Manifolds .................................. 397
        B.l.l  Riemannian Metrics on Differentiable
               Manifolds ...................................... 398
   B.2  Linear Connections and Covariant Differentiation ...... 400
        B.2.1  Geodesies ...................................... 404
        B.2.2  The Exponential Map ............................ 405
   B.3  Curvature ............................................. 406
        B.3.1  Sectional Curvature ............................ 408
        B.3.2  Isotropic Manifolds ............................ 410
   B.4  The Jacobi-Levi-Civita Equation for Geodesic Spread ... 412
   B.5  Topology and Curvature ................................ 416
        B.5.1  The Gauss-Bonnet Theorem ....................... 417
        B.5.2  Hopf-Rinow Theorem ............................. 418

Appendix C: Summary of Elementary Morse Theory ................ 421
   C.l  The Non-Critical Neck Theorem ......................... 423
        C.l.l  Critical Points and Topological Changes ........ 424
        C.1.2  Morse Inequalities ............................. 428

References .................................................... 431

Author Index .................................................. 441

Subject Index ................................................. 443


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:30 2019. Размер: 14,782 bytes.
Посещение N 2142 c 12.10.2010