Nonlinear dynamics of nanosystems (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNonlinear dynamics of nanosystems / ed. by G.Radons, B.Rumpf, H.G.Schuster. - Weinheim: Wiley-VCH, 2010. - xix, 455 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.451-455. - ISBN 978-3-527-40791-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
                         Part I Fluctuations

1  Nonequilibrium Nanosystems ................................... 1
   Pierre Gaspard
   1.1  Introduction ............................................ 1
   1.2  Statistical Thermodynamics of Nonequilibrium 
        Nanosystems ............................................. 4
        1.2.1  From Newton's Equations to Stochastic
               Processes ........................................ 4
        1.2.2  Entropy and the Second Law of Thermodynamics .... 10
        1.2.3  Identifying the Nonequilibrium Constraints and
               the Currents with Graph Analysis ................ 11
        1.2.4  Fluctuation Theorem for the Currents ............ 13
        1.2.5  Consequences for Linear and Nonlinear Response 
               Coefficients .................................... 15
        1.2.6  Temporal Disorder ............................... 16
        1.2.7  Nanosystems Driven by Time-Dependent Forces ..... 18
   1.3  Mechanical Nanosystems ................................. 21
        1.3.1  Friction in Double-Walled Carbon Nanotubes ...... 21
               1.3.1.1  Translational Friction ................. 23
               1.3.1.2  Rotational Friction .................... 28
        1.3.2  Electromagnetic Heating of Microplasmas ......... 30
               1.3.2.1  The Undriven System and Its 
                        Hamiltonian ............................ 30
               1.3.2.2  The Driven System and the Fluctuation 
                        Theorem ................................ 31
   1.4  Mechanochemical Nanosystems ............................ 32
        1.4.1  F1-ATPase Motor ................................. 32
        1.4.2  Continuous-State Description .................... 35
        1.4.3  Discrete-State Description ...................... 41
   1.5  Chemical Nanosystems ................................... 45
        1.5.1  Chemical Transistor ............................. 46
        1.5.2  Chemical Multistability ......................... 50
        1.5.3  Chemical Clocks ................................. 53
        1.5.4  Chemical Clocks Observed in Field Emission 
               Microscopy ...................................... 56
        1.5.5  Single-Copolymer Processes ...................... 60
               1.5.5.1  Copolymerization without a Template .... 61
               1.5.5.2  Copolymerization with a Template ....... 63
               1.5.5.3  DNA Replication ........................ 64
   1.6  Conclusions and Perspectives ........................... 65
        References ............................................. 71

2  Thermodynamics of Small Systems ............................. 75
   Denis J. Evans, Stephen R. Williams, and Debra J. Searles
   2.1  Introduction ........................................... 75
   2.2  Thermostated Dynamical Systems ......................... 76
   2.3  The Transient Fluctuation Theorem ...................... 79
   2.4  Thermodynamic Interpretation of the Dissipation
        Function ............................................... 82
   2.5  The Dissipation Theorem ................................ 84
   2.6  Nonequilibrium Work Relations .......................... 86
   2.7  Nonequilibrium Work Relations for Thermal Processes .... 91
   2.8  Corollaries of the Fluctuation Theorem and
        Nonequilibrium Work Relations .......................... 94
        2.8.1  Generalized Fluctuation Theorem ................. 94
        2.8.2  Integrated Fluctuation Theorem .................. 94
        2.8.3  Second Law Inequality ........................... 95
        2.8.4  Nonequilibrium Partition Identity ............... 96
        2.8.5  The Steady State Fluctuation Theorem ............ 97
        2.8.6  Minimum Average Work Principle ................. 100
   2.9  Experiments ........................................... 100
   2.10 Conclusion ............................................ 102
   References ................................................. 107

3  Quantum Dissipative Ratchets ............................... 111
   Milena Grifoni
   3.1  Introduction to Microscopic Ratchets .................. 111
   3.2  The Feynman Ratchet ................................... 113
   3.3  Tunneling Ratchets: Temperature Driven Current
        Reversal .............................................. 114
   3.4  Rocked Ratchets in the Deep Quantum Regime ............ 116
   3.5  Rocked Shallow Ratchets ............................... 118
   3.6  Spin Ratchets ......................................... 119
        References ............................................ 120

                       Part II Surface Effects

4  Dynamics of Nanoscopic Capillary Waves ..................... 121
   Klaus Mecke, Kerstin Falk, and Markus Rauscher
   4.1  Stochastic Hydrodynamics .............................. 122
        4.1.1  Stochastic Interfaces .......................... 122
        4.1.2  Acoustic Waves ................................. 124
        4.1.1  Capillary Waves ................................ 125
        4.1.4  Linearized Stochastic Hydrodynamics ............ 126
   4.2  Surface Tension at Nanometer Length Scales: Effect
        of Long Range Forces and Bending Energies ............. 129
   4.3  Thermal Noise Influences Fluid Flow in Nanoscopic
        Films ................................................. 132
        4.3.1  Dynamics of the Film Thickness ................. 133
        4.3.2  Comparison with Experiments .................... 135
        4.3.3  Linearized Stochastic Thin Film Equation ....... 136
   References ................................................. 141

5  Nonlinear Dynamics of Surface Steps ........................ 143
   Joachim Krug
   5.1  I ntroduction ......................................... 143
   5.2  Electromigration-Driven Islands and Voids ............. 143
        5.2.1  Electromigration of Single Layer Islands ....... 144
        5.2.2  Continuum vs. Discrete Modeling ................ 147
        5.2.3  Nonlocal Shape Evolution: Two-Dimensional
               Voids .......................................... 150
        5.2.4  Nonlocal Shape Evolution: Vacancy Islands
               with Terrace Diffusion ......................... 151
   5.3  Step Bunching on Vicinal Surfaces ..................... 152
        5.3.1  Stability of Step Trains ....................... 153
        5.3.2  Strongly and Weakly Conserved Step Dynamics .... 154
        5.3.3  Continuum Limit, Traveling Waves and Scaling
               Laws ........................................... 155
        5.3.4  A Dynamic Phase Transition ..................... 157
        5.3.5  Coarsening ..................................... 159
        5.3.6  Nonconserved Dynamics .......................... 160
        5.3.7  Beyond the Quasistatic Approximation ........... 161
   5.4  Conclusions ........................................... 162
        References ............................................ 162

6  Casimir Forces and Geometry in Nanosystems ................. 165
   Thorsten Emig
   6.1  Casimir Effect ........................................ 166
   6.2  Dependence on Shape and Geometry ...................... 168
        6.2.1  Deformed Surfaces .............................. 169
        6.2.2  Lateral Forces ................................. 176
        6.2.3  Cylinders ...................................... 180
        6.2.4  Spheres ........................................ 186
   6.3  Dependence on Material Properties ..................... 187
        6.3.1  Lifshitz Formula ............................... 188
        6.3.2  Nanoparticles: Quantum Size Effects ............ 189
   6.4  Casimir Force Driven Nanosystems ...................... 192
   6.5  Conclusion ............................................ 199
   References ................................................. 199

                    Part III Nanoelectromechanics

7  The Duffing Oscillator for Nanoelectromechanical Systems ... 203
   Sequoyah Aldridge
   7.1  Basics of the Duffing Oscillator ...................... 203
   7.2  NEMS Resonators and Their Nonlinear Properties ........ 205
   7.3  Transition Dynamics of the Duffing Resonator .......... 208
   7.4  Energy for "Uphill" Type Transitions .................. 210
   7.5  Energy Calculation Using a Variational Technique ...... 214
   7.6  Frequency Tuning ...................................... 216
   7.7  Bifurcation Amplifier ................................. 217
   7.8  Conclusion ............................................ 218
   References ................................................. 218

8  Nonlinear Dynamics of Nanomechanical Resonators ............ 221
   Ron Lifshitz and M.C. Cross
   8.1  Nonlinearities in NEMS and MEMS Resonators ............ 221
        8.1.1  Why Study Nonlinear NEMS and MEMS? ............. 222
        8.1.2  Origin of Nonlinearity in NEMS and MEMS
               Resonators ..................................... 222
        8.1.3  Nonlinearities Arising from External
               Potentials ..................................... 223
        8.1.4  Nonlinearities Due to Geometry ................. 224
   8.2  The Directly-Driven Damped Duffing Resonator .......... 227
        8.2.1  The Scaled Duffing Equation of Motion .......... 227
        8.2.2  A Solution Using Secular Perturbation Theory ... 228
        8.2.3  Addition of Other Nonlinear Terms .............. 235
   8.3  Parametric Excitation of a Damped Duffing Resonator ... 236
        8.3.1  Driving Below Threshold: Amplification and
               Noise Squeezing ................................ 239
        8.3.2  Linear Instability ............................. 241
        8.3.3  Nonlinear Behavior Near Threshold .............. 242
        8.3.4  Nonlinear Saturation above Threshold ........... 245
        8.3.5  Parametric Excitation at the Second
               Instability Tongue ............................. 247
   8.4  Parametric Excitation of Arrays of Coupled Duffing
        Resonators ............................................ 250
        8.4.1  Modeling an Array of Coupled Duffing
               Resonators ..................................... 250
        8.4.2  Calculating the Response of an Array ........... 252
        8.4.3  The Response of Very Small Arrays and
               Comparison of Analytics and Numerics ........... 255
        8.4.4  Response of Large Arrays and Numerical
               Simulation ..................................... 257
   8.5  Amplitude Equation Description for Large Arrays ....... 258
        8.5.1  Amplitude Equations for Counter Propagating
               Waves .......................................... 259
        8.5.2  Reduction to a Single Amplitude Equation ....... 260
        8.5.3  Single Mode Oscillations ....................... 261
   References ................................................. 263

9  Nonlinear Dynamics in Atomic Force Microscopy and Its
   Control for Nanoparticle Manipulation ...................... 267
   Kohei Yamasue and Takashi Hikihara
   9.1  Introduction .......................................... 267
   9.2  Operation of Dynamic Mode Atomic Force Microscopy ..... 269
   9.3  Nonlinear Dynamics and Control of Cantilevers ......... 270
        9.3.1  Nonlinear Oscillation and Its Influence on
               Imaging ........................................ 270
        9.3.2  Model of a Cantilever under Tip-Sample
               Interaction .................................... 272
        9.3.3  Application of Time-Delayed Feedback Control ... 273
        9.3.4  Experimental Setup for Control of Nonlinear
               Cantilever Dynamics ............................ 274
               9.3.4.1  Circuit Implement of Time-Delayed
                        Feedback Control ...................... 274
               9.3.4.2  Frequency Response of Magnetic
                        Actuators and Deflection Sensors ...... 275
        9.3.5  Experimental Demonstration of the
               Stabilization of Cantilever Oscillations ....... 275
   9.4  Manipulation of Single Atoms at Material Surfaces ..... 277
        9.4.1  Model of Single Atoms and Molecules ............ 277
        9.4.2  Analysis Based on an Action-Angle
               Formulation .................................... 279
        9.4.3  Dynamics of Single Atoms Induced by Probes ..... 281
        9.4.4  Control of Manipulation ........................ 283
   9.5  Concluding Remarks .................................... 283
        References ............................................ 284

                       Part IV Nanoelectronics

10 Classical Correlations and Quantum Interference in
   Ballistic Conductors ....................................... 287
   Daniel Waltner and Klaus Richter
   10.1 Introduction: Quantum Transport through Chaotic
        Conductors ............................................ 287
   10.2 Semiclassical Limit of the Landauer Transport
        Approach .............................................. 289
   10.3 Quantum Transmission: Configuration Space Approach .... 291
        10.3.1 Diagonal Contribution .......................... 292
        10.3.2 Nondiagonal Contribution ....................... 293
        10.3.3 Magnetic Field Dependence of the Nondiagonal
               Contribution ................................... 297
        10.3.4 Ehrenfest Time Dependence of the Nondiagonal
               Contribution ................................... 298
   10.4 Quantum Transmission: Phase Space Approach ............ 299
        10.4.1 Phase Space Approach ........................... 299
        10.4.2 Calculation of the Full Transmission ........... 301
   10.5 Semiclassical Research Paths: Present and Future ...... 303
        References ............................................ 304

11 Nonlinear Response of Driven Mesoscopic Conductors ......... 307
   Franz J. Kaiser and Sigmund Kohler
   11.1 Introduction .......................................... 307
   11.2 Wire-Lead Model and Current Noise ..................... 308
        11.2.1 Charge, Current, and Current Fluctuations ...... 310
        11.2.2 Full Counting Statistics ....................... 311
   11.3 Master Equation Approach .............................. 312
        11.3.1 Perturbation Theory and Reduced Density
               Operator ....................................... 312
        11.3.2 Computation of Moments and Cumulants ........... 313
        11.3.3 Floquet Decomposition .......................... 315
               11.3.3.1  Fermionic Floquet Operators .......... 315
               11.3.3.2  Master Equation and Current
                         Formula .............................. 316
        11.3.4  Spinless Electrons ............................ 318
   11.4 Transport under Multi-Photon Emission and
        Absorption ............................................ 318
        11.4.1 Electron Pumping ............................... 319
        11.4.2 Coherent Current Suppression ................... 320
   11.5 Conclusions ........................................... 322
        References ............................................ 323

12 Pattern Formation and Time Delayed Feedback Control
   at the Nanoscale ........................................... 325
   Eckehard Schöll
   12.1 Introduction .......................................... 325
   12.2 Control of Chaotic Domain and Front Patterns in
        Superlattices ......................................... 329
   12.3 Control of Noise-Induced Oscillations in
        Superlattices ......................................... 333
   12.4 Control of Chaotic Spatiotemporal Oscillations in
        Resonant Tunneling Diodes ............................. 341
   12.5 Noise-Induced Spatiotemporal Patterns in Resonant
        Tunneling Diodes ...................................... 350
   12.6 Conclusion ............................................ 361
   References ................................................. 363

                 Part V Optic-Electronic Coupling

13 Laser-Assisted Electron Transport in Nanoscale Devices ..... 369
   Ciprian Padurariu, Atef Fadl Amin, and Ulrich
   Kleinckathöfer
   13.1 Open Quantum Systems .................................. 370
        13.1.1  Quantum Master Equation Approach .............. 371
        13.1.2  Time-Local and Time-Nonlocal Master
                Equations ..................................... 373
        13.1.3  Full Counting Statistics ...................... 377
   13.2 Model System Describing Molecular Wires and Quantum
        Dots .................................................. 385
   13.3 The Single Resonant Level Model ....................... 391
   13.4 Influence of Laser Pulses ............................. 398
   13.5 Summary and Outlook ................................... 403
   References ................................................. 403

14 Two-Photon Photoemission of Plasmonic Nanostructures
   with High Temporal and Lateral Resolution .................. 407
   Michael Bauer, Daniela Bayer, Carsten Wiemann, and Martin
   Aeschlimann
   14.1 Introduction .......................................... 407
   14.2 Experimental .......................................... 410
   14.3 Results and Discussion ................................ 414
        14.3.1 Localized Surface Plasmons Probed by TR-2PPE ... 414
        14.3.2 Single Particle Plasmon Spectroscopy by Means
               of Time-Resolved Photoemission Microscopy ...... 417
   14.4 Conclusion ............................................ 423
        References ............................................ 424

15 Dynamics and Nonlinear Light Propagation in Complex
   Photonic Lattices .......................................... 427
   Bernd Terhalle, Patrick Rose, Dennis Göries, Jörg
   Imbrock, and Cornelia Denz
   15.1 Introduction .......................................... 427
   15.2 Wave Propagation in Periodic Photonic Structures ...... 428
        15.2.1 Linear Propagation ............................. 429
        15.2.2 Nonlinear Propagation .......................... 430
   15.3 Optically-Induced Photonic Lattices in
        Photorefractive Media ................................. 431
        15.3.1 Mathematical Description of Photorefractive
               Photonic Lattices .............................. 431
        15.3.2 Experimental Configuration for
               Photorefractive Lattice Creation ............... 432
   15.4 Complex Optically-Induced Lattices in Two Transverse
        Dimensions ............................................ 433
        15.4.1 Triangular Lattices ............................ 434
        15.4.2 Multiperiodic Lattices ......................... 437
   15.5 Vortex Clusters ....................................... 440
        15.5.1 Necessary Stability Criterion .................. 441
        15.5.2 Compensation of Anisotropy in Hexagonal
               Photonic Lattices .............................. 441
        15.5.3 Ring-Shaped Vortex Clusters .................... 442
        15.5.4 Multivortex Clusters ........................... 446
   15.6 Summary and Outlook ................................... 447
        References ............................................ 448

Index ......................................................... 451


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:30 2019. Размер: 23,697 bytes.
Посещение N 1766 c 12.10.2010