Preface ...................................................... XVII
List of Contributors ........................................... XX
Part One Copper, Silver and Cold Nanomaterials .................. 1
1 Approaches to Synthesis and Characterization of Spherical
and Anisotropic Copper Nanomaterials ......................... 3
Nicola Cioffi, Nicoletta Ditaranto, Luisa Torsi and Luigia
Sabbatini
1.1 Introduction ............................................ 3
1.2 Physical/Mechanical and Vapor-Phase Approaches .......... 7
1.2.1 Mechanical and Mechanochemical Milling ........... 7
1.2.2 Electrical Wire Explosion and Electrospinning
Approaches ....................................... 8
1.2.3 Spray and Flame-Spray Pyrolysis .................. 9
1.2.4 Arc-Discharge Approaches ........................ 10
1.2.5 Metal Vapor Condensation ........................ 12
1.2.6 Metal-Organic Chemical Vapor Condensation ....... 12
1.3 Chemical Approaches .................................... 13
1.3.1 Wet-Chemical Routes without Surfactants ......... 14
1.3.2 Wet-Chemical Routes Based on Surfactants and
Low-Molecular-Weight Capping Agents ............. 14
1.3.2.1 Aerosol ОТ (AOT)-Capped Cu
Nanomaterials .......................... 14
1.3.2.2 Alkyl-Phosphate-Capped Cu NPs .......... 22
1.3.2.3 Alkyl-Sulfate-Capped Cu NPs ............ 22
1.3.2.4 Alkyl-Thiol-Capped Cu NPs .............. 22
1.3.2.5 Cu NPs Capped by Quaternary Ammonium
Surfactants ............................ 25
1.3.2.6 Cu NPs Capped by Nonionic Surfactants
or Stabilizers ......................... 25
1.3.2.7 Cu NPs Capped by Cysteine, Oleic Acid
and Other Small Molecules with
Biological Relevance ................... 26
1.3.3 Wet-Chemical Routes Based on Polymer and
Dendrimer Capping Agents ........................ 28
1.3.3.1 The Polyol Process ..................... 30
1.3.3.2 Polymer-Based Soft-Template
Processes .............................. 30
1.3.3.3 Encapsulation in Dendrimers ............ 31
1.3.4 Wet-Chemical Routes Based on Biotemplate
Systems ......................................... 32
1.3.5 Redox Routes in Compressed and Heated Fluids:
Hydrothermal, Solvothermal and Supercritical
Fluid Methods ................................... 33
1.3.5.1 Hydrothermal Routes .................... 33
1.3.5.2 Solvothermal Routes .................... 34
1.3.5.3 Routes Based on Supercritical Fluids ... 34
1.3.6 Redox Routes in Ionic Liquids ................... 37
1.3.7 Ultrasonic-Chemical Processes ................... 38
1.4 Photochemical, Laser Ablation and Radiation- or Electron
Beam-Assisted Processes ................................ 38
1.4.1 Photochemical Reduction in the Presence of
Capping Agents and Sensitizers .................. 39
1.4.2 Laser Ablation and Photo-Fragmentation
Processes ....................................... 40
1.4.3 γ-Irradiation ................................... 41
1.4.4 Electron Beam Irradiation ....................... 42
1.5 Electrochemical Approaches ............................. 42
1.5.1 Sacrificial Anode Electrolysis in the Presence
of Surfactants .................................. 43
1.5.2 Electrochemical Milling ......................... 46
1.5.3 Ultrasonic-Electrochemical ...................... 46
1.5.4 Electrolysis in Ionic Liquids ................... 48
1.5.5 Template-Assisted Electrochemical Growth of Cu
Nanorods and Nanowires .......................... 48
1.6 Conclusions ............................................ 49
References .................................................. 51
2 Spherical and Anisotropic Copper Nanomaterials in
Medical Diagnosis ........................................... 71
Chi-Chung Chou, Jen-Lin Chang and Jyh-Myng Zen
2.1 Introduction ........................................... 71
2.2 Copper Nanoparticles ................................... 73
2.3 Synthesis of Copper Nanoparticles ...................... 75
2.3.1 Chemical Reduction in Aqueous Media ............. 75
2.3.2 Chemical Reduction in Organic Media ............. 76
2.3.3 Photoreduction .................................. 77
2.3.4 Sonochemical Production ......................... 77
2.3.5 Machine-Chemical Reduction ...................... 78
2.3.6 Electrochemical Reduction ....................... 78
2.4 Applications of Cu-NPs in Medical Diagnosis ............ 80
2.4.1 Medical Imaging ................................. 80
2.4.1.1 Magnetic Resonance Imaging ............. 80
2.4.1.2 Positron Emission Tomography (PET) ..... 81
2.4.2 Diagnosis of Metabolic Disorders ................ 81
2.4.2.1 Glucose ................................ 81
2.4.2.2 Organic Acids .......................... 82
2.4.2.3 Amino Acids ............................ 83
2.4.2.4 Urate and Uric Acid .................... 85
2.4.3 Other Medical Applications ...................... 85
2.4.3.1 Drug Delivery and Therapy .............. 85
2.4.3.2 Antibacterial Activity ................. 86
2.5 Conclusions ............................................ 87
References ............................................. 89
3 Approaches to the Synthesis and Characterization of
Spherical and Anisotropic Silver Nanomaterials .............. 99
Deirdre M. Ledwith, Damian Aherne and John M. Kelly
3.1 Introduction ........................................... 99
3.2 Optical Properties of Metal Nanopartides ............... 99
3.3 Preparation of Spherical Nanopartides ................. 101
3.3.1 Stability of Electrostatically Stabilized
Nanopartides ................................... 101
3.3.2 Aqueous Synthetic Methods ...................... 103
3.3.2.1 Chemical Reduction .................... 103
3.3.2.2 Physical Methods ...................... 104
3.3.3 Organic Solvents ............................... 106
3.3.3.1 Stability of Sterically Stabilized
Nanopartides .......................... 106
3.3.3.2 Reduction by the Solvent .............. 107
3.3.3.3 Microemulsion Methods ................. 107
3.3.3.4 Thiol-Stabilized Nanopartides ......... 109
3.4 Synthesis of Anisotropic Silver Nanopartides .......... 109
ЗАЛ Nanorods and Nanowires ........................... 110
3.4.1.1 Aqueous Surfactant-Based Methods ...... 111
3.4.1.2 Organic (Polyol-Based) Methods ........ 113
3.4.2 Cubes .......................................... 117
3.4.2.1 Aqueous Surfactant-Based Methods ...... 117
3.4.2.2 Organic Polyol-Based Methods .......... 117
3.4.3 Other Morphologies Prepared by the Polyol
Process ........................................ 119
3.4.3.1 Right Bipyramids ...................... 119
3.4.3.2 Nanobeams ............................. 120
3.4.3.3 Nanobars and Nanorice ................. 120
3.4.4 Nanoplates and Nanoprisms ...................... 122
3.4.4.1 Photochemical Methods ................. 122
3.4.4.2 Thermal Methods ....................... 127
3.4.4.3 Physical Aspects ...................... 133
3.5 Applications .......................................... 137
3.6 Conclusions ........................................... 137
Abbreviations ......................................... 138
References ............................................ 139
4 Spherical and Anisotropic Silver Nanomaterials in Medical
Therapy .................................................... 149
Kenneth K.Y. Wong
4.1 Introduction .......................................... 149
4.2 Actions of Silver Nanoparticles ....................... 150
4.2.1 Antimicrobial Effects .......................... 150
4.2.2 Anti-Inflammatory Effects ...................... 151
4.3 Applications of Silver Nanoparticles in Medicine ...... 152
4.3.1 Nanosilver in Diagnosis, Imaging and
Targeting ...................................... 152
4.3.2 Nanosilver in Therapeutics ..................... 154
4.3.2.1 Wound Dressings ....................... 154
4.3.2.2 Silver-Impregnated Catheters .......... 155
4.3.2.3 Orthopedic Applications ............... 157
4.3.2.4 Surgical Mesh ......................... 158
4.3.2.5 Disinfectants ......................... 159
4.4 Are Silver Nanoparticles Toxic? ....................... 159
4.4.1 Access via the Skin ............................ 160
4.4.2 Pulmonary Entry ................................ 161
4.4.3 Gastrointestinal Tract ......................... 162
4.4.4 Other Tissues .................................. 162
4.5 Possible New Therapeutic Options ...................... 163
4.5.1 Anti-Inflammatory Agents ....................... 163
4.5.2 Anti-Viral Drugs ............................... 163
4.6 Conclusions ........................................... 164
References ............................................ 166
5 Spherical and Anisotropic Silver Nanomaterials in Medical
Diagnosis .................................................. 173
Yiping Zhao and Ralph A. Tripp
5.1 Introduction .......................................... 173
5.2 Silver Nanostructure-Based Diagnostic Techniques ...... 176
5.2.1 Surface Plasmon Resonance (SPR) ................ 177
5.2.2 Localized Surface Plasmon Resonance (LSPR) ..... 178
5.2.3 Metal-Enhanced Florescence ..................... 181
5.2.4 Surface-Enhanced Infrared Absorbance
Spectroscopy ................................... 182
5.2.5 Surface-Enhanced Raman Spectroscopy ............ 183
5.3 Overview of Ag Nanostructure Synthesis and
Fabrication ........................................... 185
5.3.1 Individual Metallic Nanoparticles .............. 185
5.3.2 Aggregates of Metallic Nanoparticles ........... 186
5.3.3 Arrays of Metallic Nanoparticles ............... 186
5.4 Applications .......................................... 190
5.4.1 Small Biomolecule Detection .................... 192
5.4.2 Detection of MicroRNAs as Biomarkers of
Disease ........................................ 193
5.4.3 Nucleic Acids (DNA and RNA) Detection .......... 196
5.4.4 Virus Detection ................................ 198
5.4.4.1 Using SERS to Distinguish between
Different Virus Types ................. 198
5.4.4.2 Using SERS to Detect Viruses in
Biological Media ...................... 198
5.4.4.3 Using SERS to Detect Very Low Levels
of Virus .............................. 200
5.4.4.4 Using SERS to Differentiate between
Strains of a Single Virus Type ........ 200
5.4.5 Bacteria Detection ............................. 201
5.4.5.1 Using SERS to Differentiate between
Types of Bacteria ..................... 203
5.4.5.2 Using SERS to Differentiate between
Different Bacterial Strains ........... 205
5.4.5.3 Using SERS to Distinguish between
Live and Dead Bacteria ................ 206
5.4.5.4 SERS has Single-Bacterium Detection
Sensitivity ........................... 207
5.5 Conclusions ........................................... 208
Acknowledgments ....................................... 209
References ................................................. 209
6 Health and Environmental Impact of Silver Nanomaterials .... 225
Il Je Yu and Bruce Kelman
6.1 Introduction .......................................... 225
6.2 Antimicrobial Activity ................................ 225
6.3 In Vitro Toxicity ..................................... 227
6.3.1 Liver Cells .................................... 227
6.3.2 Neuronal Cells ................................. 227
6.3.3 Germ Cells ..................................... 228
6.3.4 Peripheral Mononuclear Cells ................... 229
6.4 In Vivo Toxicity ...................................... 229
6.4.1 In Vivo Toxicity in Birds ...................... 229
6.4.2 In Vivo Genotoxicity in Rodents ................ 229
6.4.3 Acute Toxicity in Rodents ...................... 230
6.4.4 28-Day Repeated Oral Dose Studies in Rodents ... 230
6.4.5 28-Day Inhalation Studies in Rodents ........... 231
6.4.6 90-Day Inhalation Toxicity Study in Rodents .... 231
6.5 Environmental Exposure and Risk from Silver
Nanoparticles ......................................... 232
6.6 Conclusions ........................................... 232
References ................................................. 233
7 Approaches to Synthesis and Characterization of Spherical
and Anisotropic Cold Nanomaterials ......................... 235
Tai Hwan Ha
7.1 Introduction .......................................... 235
7.2 Optical Properties of Gold Nanocrystals ............... 236
7.3 Chemical Constituents for the Growth of Gold
Nanocrystal ........................................... 238
7.3.1 Gold Precursors ................................ 238
7.3.2 Influences of Reducing Agents .................. 240
7.3.3 Influences of the Reaction Medium .............. 241
7.3.4 Roles of Passivation Components ................ 242
7.3.5 Hard Templates for the Fabrication of
Anisotropic Nanomaterials ...................... 243
7.4 Representative Reactions Categorized by Reducing
Agents ................................................ 244
7.4.1 Fast Reduction by Sodium Borohydride ........... 244
7.4.2 Polyol Synthesis in the Presence of PVP ........ 245
7.4.2.1 Influences of Reaction Medium ......... 245
7.4.2.2 Influences of Silver Ions and PVP ..... 247
7.4.3 Other Thermal Reductions of Gold Precursors .... 248
7.4.3.1 Citrate Reduction in the Presence of
PVP ................................... 248
7.4.3.2 DMF Reduction in the Presence of
PVP ................................... 249
7.4.3.3 Amine Reduction ....................... 251
7.4.4 Seed-Mediated Growth by Ascorbic Acid .......... 252
7.4.4.1 Overview of Seed-Mediated Growth ...... 253
7.4.4.2 Controversial Issues with the Seed-
Mediated Growth ....................... 254
7.4.4.3 Influences of Silver and Halide
Ions .................................. 255
7.4.5 Electrochemical and Photochemical Growth of
Gold Nanocrystals .............................. 255
7.5 Morphologies of Representative Gold Nanocrystals and
Possible Growth Mechanisms ............................ 256
7.5.1 Frequently Observed Morphologies of Gold
Nanocrystals ................................... 256
7.5.1.1 Twinned Gold Nanorods and Related
Decahedrons ........................... 256
7.5.1.2 Gold Icosahedrons and Nanoplates ...... 257
7.5.1.3 Single Crystalline Gold
Nanocrystals .......................... 258
7.5.1.4 Irregular Multipods ................... 259
7.5.1.5 Post-Treatment of As-Grown
Nanocrystals .......................... 259
7.5.1.6 Noticeable Features in the Observed
Morphologies .......................... 260
7.5.2 Growth Mechanism of Gold Nanocrystals .......... 261
7.5.2.1 Seed Structures at the Early Stage
of Growth ............................. 261
7.5.2.2 Twinning and Reaction Temperature ..... 262
7.5.2.3 Thermodynamic Stability of Twinned
Particles ............................. 264
7.5.2.4 Roles of Passivating Chemicals in
Shape Development ..................... 264
7.5.2.5 Influences of Surface-Active
Chemicals ............................. 265
7.5.2.6 Overall Picture for the Growth of
Gold Nanocrystals ..................... 266
7.6 Applications of Gold Nanocrystals in the Life
Sciences .............................................. 267
7.6.1 Contrast-Enhancing Agents ...................... 267
7.6.2 Photothermal Therapeutics ...................... 268
7.6.3 Renal Barrier and Cytotoxicity of Gold
Nanomaterials .................................. 268
7.7 Summary and Perspectives .............................. 269
Acknowledgment ........................................ 270
References ............................................ 270
8 Spherical and Anisotropic Cold Nanomaterials in Medical
Therapy .................................................... 277
Takuro Niidome, Atsushi Shiotcmi, Yoshiki Katayama
and Yasuro Niidome
8.1 Introduction .......................................... 277
8.2 Gold Nanospheres ...................................... 278
8.2.1 Cellular Imaging using Light Scattering from
Gold Nanospheres ............................... 278
8.2.2 Gold Nanospheres as a Contrast Agent for
Computed Tomography ............................ 278
8.2.3 Photothermal Cellular Damage ................... 279
8.2.4 Radiofrequency Thermal Damage of Cells ......... 279
8.2.5 DNA Carrier for Gene Therapy ................... 281
8.3 Gold Nanoshells ....................................... 283
8.4 Gold Nanorods ......................................... 284
8.4.1 Preparation of Biocompatible Gold Nanorods ..... 285
8.4.2 In Vitro Bioimaging and Photothermal Ablation
of Cells ....................................... 287
8.4.3 In Vivo Bioimaging ............................. 289
8.4.4 Photothermal Therapy ........................... 291
8.4.5 Drug Release System Responding to Laser
Irradiation .................................... 292
8.4.6 Controller of Gene Expression .................. 296
8.5 Other Anisotropic Gold Nanoparticles .................. 297
8.6 Conclusions ........................................... 298
Acknowledgments ............................................ 298
References ................................................. 298
Part Two Palladium and Platinum Nanomaterials ................ 303
9 Approaches to Synthesis and Characterization of Spherical
and Anisotropic Palladium Nanomaterials .................... 305
Ruel С. Freemantle, Minghong Liu, Wen Guo and Sherine
O. Obare
9.1 Introduction .......................................... 305
9.2 Synthesis ............................................. 306
9.2.1 Synthesis of Isotropic Palladium
Nanoparticles .................................. 306
9.2.1.1 Synthesis Using Polymer Stabilizers ... 307
9.2.1.2 Synthesis Using Thiol Stabilizers ..... 308
9.2.1.3 Synthesis Using Dendrimer
Stabilizers ........................... 310
9.2.1.4 Synthesis Using Thioether
Stabilizers ........................... 311
9.2.1.5 Synthesis Using Phosphine and
Bisphosphine Stabilizers .............. 311
9.2.1.6 Synthesis Using DNA Stabilizers ....... 314
9.2.2 Anisotropic Palladium Nanoparticles ............ 314
9.2.2.1 Nanocubes, Nanorods and Nanocages ..... 315
9.2.2.2 Triangular and Hexagonal Nanoplates ... 318
9.2.2.3 High-Aspect Ratio Pd Nanoparticles .... 322
9.2.3 Characterization ............................... 329
9.2.3.1 Electron Microscopy ................... 329
9.2.3.2 Spectroscopic Techniques .............. 333
9.2.3.3 Chemical Analysis Techniques .......... 336
9.2.3.4 Physical Analysis Techniques .......... 338
9.2.3.5 Electrochemistry ...................... 341
9.3 Life Sciences-Related Applications of Palladium
Nanoparticles ......................................... 343
9.3.1 Catalysis ...................................... 343
9.3.1.1 Suzuki Reaction ....................... 346
9.3.1.2 Heck Reaction ......................... 347
9.3.1.3 Stille Reaction ....................... 347
9.3.1.4 Hydrogenation Reactions ............... 347
9.3.2 Environmental Remediation ...................... 348
9.3.3 Sensing ........................................ 348
9.4 Future Perspectives ................................... 349
References ............................................ 349
10 Approaches to the Synthesis and Characterization of
Spherical and Anisotropic Platinum Nanomaterials ........... 357
Zhenmeng Peng, Shengchun Yang and Hong Yang
10.1 Introduction .......................................... 357
10.2 The Principles of Shape Control of Nanocrystals
During Nucleation and Growth .......................... 359
10.2.1 Nucleation ..................................... 359
10.2.1.1 Classical Nucleation Theory ........... 359
10.2.1.2 Controllable Parameters for
Nucleation ............................ 361
10.2.1.3 Types of Nucleation ................... 362
10.2.2 Growth ......................................... 363
10.2.2.1 Uniformity Control Related to the
Morphology of Nanocrystals ............ 363
10.2.2.2 Shape Controls ........................ 365
10.3 General Synthetic Approaches .......................... 370
10.3.1 Aqueous-Phase Synthesis ........................ 370
10.3.1.1 Colloidal Synthesis ................... 370
10.3.1.2 Electrochemical Methods ............... 373
10.3.1.3 Other Methods ......................... 373
10.3.2 Nonhydrolytic Synthesis ........................ 373
10.3.2.1 Solvents .............................. 375
10.3.2.2 Precursors ............................ 375
10.3.2.3 Reducing Agents ....................... 376
10.3.2.4 Capping Agents ........................ 376
10.4 Pseudo-Zero-Dimensional Pt Nanoparticles .............. 376
10.4.1 Faceted Particles .............................. 377
10.4.1.1 Nanocubes ............................. 377
10.4.1.2 Tetrahedron, Cubo-Octahedronal and
Octahedron ............................ 378
10.4.1.3 Tetrahexahedron ....................... 379
10.4.2 Spherical Nanoparticles ........................ 379
10.5 One-Dimensional Nanostructures: Nanowires and
Nanotubes ............................................. 380
10.5.1 Nanowires ...................................... 380
10.5.1.1 Polyol and Template-Free Synthesis .... 380
10.5.1.2 Template Synthesis .................... 382
10.5.2 Nanotubes ...................................... 383
10.6 Two-Dimensional Platinum Nanostructures ............... 383
10.6.1 Planar Tripods and Bipods ...................... 384
10.6.2 Nanoplates ..................................... 384
10.6.3 2-D Nanodendrites and Nanosheets ............... 385
10.6.4 Porous Nanonetwork Prepared with the
Langmuir-Blodgett (LB) Technique ............... 385
10.7 Three-Dimensional Nanostructures ...................... 386
10.7.1 Pt Multipods and Flower-Like Nanostructures .... 386
10.7.1.1 Pt Multipods .......................... 386
10.7.1.2 Nanoflowers and Dendritic
Nanostructures ........................ 387
10.7.2 Hollow Nanostructures .......................... 388
10.7.3 3-D Networks ................................... 389
10.8 Platinum Alloys and Intermetallics .................... 390
10.9 Concluding Remarks .................................... 390
Acknowledgments ............................................ 391
References ................................................. 392
Part Three An Overview of Metallic Nanomaterials ............. 403
11 Approaches to the Synthesis and Characterization of
Spherical and Anisotropic Noble Metal Nanomaterials ........ 405
Harshala J. Parab, Hao Ming Chen, Nitin C. Bagkar, Ru-Shi
Liu, Yeu-Kuang Hwu and Din Ping Tsai
11.1 General Introduction .................................. 405
11.1.1 Noble Metal Nanoparticles ...................... 407
11.1.2 Origin of Surface Plasmon Resonance in Noble
Metal Nanoparticles ............................ 408
11.2 General Synthetic Strategies .......................... 410
11.2.1 Shape Variation ................................ 411
11.2.2 Nucleation and Growth .......................... 413
11.2.3 Chemical Synthetic Approach .................... 414
11.2.3.1 Citrate Reduction ..................... 415
11.2.3.2 Polyol Synthesis ...................... 416
11.2.3.3 Seed-Mediated Synthesis ............... 426
11.2.3.4 Other Methods ......................... 436
11.2.4 Bio-Based Synthetic Approach ................... 437
11.2.4.1 Bacteria .............................. 437
11.2.4.2 Plants ................................ 440
11.2.4.3 Fungi ................................. 440
11.2.4.4 Actinomycetes, Yeast and Algae ........ 441
11.3 Characterization of Anisotropic Nanostructures ........ 441
11.3.1 Plasmonic Measurements of Single Gold
Nanorod ........................................ 442
11.3.2 XANES Analysis of Gold Nanoparticles ........... 443
11.3.3 Theoretical Simulation of XANES ................ 446
11.4 Conclusions and Future Perspectives ................... 449
Acknowledgments ............................................ 449
References ................................................. 449
12 Biological and Biomaterials-Assisted Synthesis of
Precious Metal Nanoparticles ............................... 461
Jason C. Parsons, Jose R. Peralta-Videa, Kenneth
M. Dokken and Jorge L. Gardea-Torresdey
12.1 Introduction .......................................... 461
12.2 Growth Process of Precious Metal Nanoparticles: Gold
as an Example ......................................... 463
12.3 Characterization Techniques for Nanomaterials
Synthesized Through Biological Means .................. 465
12.4 Morphology of Biologically Synthesized Precious
Metal Nanoparticles ................................... 471
12.5 Inactivated Biological Tissues and Extracts for
Nanoparticle Synthesis ................................ 473
12.5.1 Synthesis Using Inactivated Biological
Tissues ........................................ 473
12.5.1.1 Algal Biomass ......................... 474
12.5.1.2 Alfalfa Biomass ....................... 474
12.5.1.3 Oat and Wheat Biomasses ............... 475
12.5.1.4 Hops Biomass .......................... 475
12.5.1.5 Cinnamomum camphora Biomass ........... 476
12.5.2 Synthesis Using Extracts from Biological
Tissues ........................................ 476
12.6 Nanoparticle Synthesis Using Fungi and Bacteria ....... 478
12.6.1 Fungal Synthesis of Precious Metal
Nanoparticles .................................. 478
12.6.2 Bacterial Synthesis of Precious Metal
Nanoparticles .................................. 480
12.7 Nanoparticle Synthesis by Living Plants ............... 482
12.8 Conclusions ........................................... 484
Acknowledgments ............................................ 484
References ................................................. 485
13 Spherical and Anisotropic Cold Nanomaterials in Plasmonic
Laser Phototherapy of Cancer ............................... 493
Adela Ben-Yakar, Daniel Eversole and Ozgur Ekici
13.1 I ntroduction ......................................... 493
13.2 Theoretical Understanding of Plasmonic Resonance ...... 495
13.2.1 Origin of Surface Plasmon Resonance ............ 495
13.2.2 Description of Absorption and Scattering
Properties ..................................... 496
13.2.3 Near-Field Scattering Dynamics ................. 498
13.2.4 Tunable Optical Properties of Particles ........ 500
13.2.4.1 Effect of Particle Aggregation ........ 500
13.2.4.2 Effect of Particle Material
Composition ........................... 501
13.2.4.3 Effect of Particle Geometric
Changes ............................... 502
13.2.4.4 Near-Field Tunability ................. 502
13.2.5 Plasmonic Summary .............................. 504
13.3 Understanding Nanoparticle Heating Properties ......... 504
13.3.1 Fundamentals of Laser Heating of
Nanoparticles and Their Surrounding Medium ..... 504
13.3.2 Particle Heating/Cooling Models ................ 506
13.3.2.1 Thermodynamic Model ................... 506
13.3.2.2 Heat Transfer Model ................... 506
13.3.3 Laser-Induced Phase Changes .................... 509
13.3.4 Summary of Heating Dynamics .................... 512
13.4 Plasmonic Laser Phototherapy (PLP) .................... 513
13.4.1 Continuous-Wave Laser Plasmonic Phototherapy ... 514
13.4.1.1 In Vitro Cell Studies ................. 514
13.4.1.2 In Vivo Animal Studies ................ 517
13.4.2 Pulsed Laser Plasmonic Phototherapy ............ 518
13.4.2.1 Localized Thermal Damage
(Hyperthermia) ........................ 518
13.4.2.2 Bubble Formation ...................... 523
13.4.2.3 Overlapping Bubble Formation .......... 525
13.4.2.4 Fragmentation of Nanoparticles ........ 525
13.4.2.5 Nonlinear Absorption-Induced PLP ...... 526
13.4.2.6 Plasmonic Laser Nanosurgery ........... 527
13.4.3 Summary of Plasmonic Laser Phototherapy ........ 528
13.5 Summary ............................................... 529
13.6 Future Perspectives ................................... 530
Acknowledgments ............................................ 533
References ................................................. 533
14 Application of Metallic Nanoparticles in Textiles .......... 541
Nadanathangam Vigneshwaran, Perianambi V. Varadarajan and
Rudrapatna H. Balasubramanya
14.1 Introduction .......................................... 541
14.2 Metal Nanomaterials ................................... 542
14.3 Nanotechnology in Textiles ............................ 543
14.3.1 Textile Finishing Processes .................... 543
14.3.2 Textile Finishing Using Silver Nanoparticles ... 545
14.3.3 Textile Finishing Using Other Metal
Nanoparticles .................................. 548
14.3.4 Metallic Versus Nonmetallic Nanoparticles in
Textiles ....................................... 551
14.4 Commercial Use of Nanotechnology in Textiles .......... 552
14.5 Environmental Concerns ................................ 554
14.6 Conclusions ........................................... 555
References ................................................. 555
Index ......................................................... 559
|