Desolneux A. From Gestalt theory to image analysis: a probabilistic approach (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDesolneux A. From Gestalt theory to image analysis: a probabilistic approach / A.Desolneux, L.Moisan, J.-M.Morel. - New York: Springer, 2008. - xii, 273 p.: ill. - (Interdisciplinary applied mathematics; Vol.34). - Ref.: p.261-269. - Ind.: p.271-273. - ISBN 978-0-387-74378-3
 

Оглавление / Contents
 
Preface ......................................................... v

1  Introduction ................................................. 1
   1.1  Gestalt Theory and Computer Vision ...................... 1
   1.2  Basic Principles of Computer Vision ..................... 3

2  Gestalt Theory .............................................. 11
   2.1  Before Gestaltism: Optic-Geometric Illusions ........... 11
   2.2  Grouping Laws and Gestalt Principles ................... 13
        2.2.1  Gestalt Basic Grouping Principles ............... 13
        2.2.2  Collaboration of Grouping Laws .................. 17
        2.2.3  Global Gestalt Principles ....................... 19
   2.3  Conflicts of Partial Gestalts and the Masking
        Phenomenon ............................................. 21
        2.3.1  Conflicts ....................................... 21
        2.3.2  Masking ......................................... 22
   2.4  Quantitative Aspects of Gestalt Theory ................. 25
        2.4.1  Quantitative Aspects of the Masking
               Phenomenon ...................................... 25
        2.4.2  Shannon Theory and the Discrete Nature of
               Images .......................................... 27
   2.5  Bibliographic Notes .................................... 29
   2.6  Exercise ............................................... 29
        2.6.1  Gestalt Essay ................................... 29

3  The Helmholtz Principle ..................................... 31
   3.1  Introducing the Helmholtz Principle: Three Elementary
        Examples ............................................... 31
        3.1.1  A Black Square on a White Background ............ 31
        3.1.2  Birthdays in a Class and the Role of
               Expectation ..................................... 34
        3.1.3  Visible and Invisible Alignments ................ 36
   3.2  The Helmholtz Principle and ε-Meaningful Events ........ 37
        3.2.1  A First Illustration: Playing Roulette with
               Dostoievski ..................................... 39
        3.2.2  A First Application: Dot Alignments ............. 41
        3.2.3  The Number of Tests ............................. 42
   3.3  Bibliographic Notes .................................... 43
   3.4  Exercise ............................................... 44
        3.4.1  Birthdays in a Class ............................ 44

4  Estimating the Binomial Tail ................................ 47
   4.1  Estimates of the Binomial Tail ......................... 47
        4.1.1  Inequalities for fig.5(l,k,p) ....................... 49
        4.1.2  Asymptotic Theorems for fig.5{1,k,p) = fig.4[S1 ≥ k] .... 50
        4.1.3  A Brief Comparison of Estimates for fig.5(l,k,p) .... 50
   4.2  Bibliographic Notes .................................... 52
   4.3  Exercises .............................................. 52
        4.3.1  The Binomial Law ................................ 52
        4.3.2  Hoeffding's Inequality for a Sum of Random
               Variables ....................................... 53
        4.3.3  A Second Hoeffding Inequality ................... 55
        4.3.4  Generating Function ............................. 56
        4.3.5  Large Deviations Estimate ....................... 57
        4.3.6  The Central Limit Theorem ....................... 60
        4.3.7  The Tail of the Gaussian Law .................... 63

5  Alignments in Digital Images ................................ 65
   5.1  Definition of Meaningful Segments ...................... 65
        5.1.1  The Discrete Nature of Applied Geometry ......... 66
        5.1.2  The A Contrario Noise Image ..................... 67
        5.1.3  Meaningful Segments ............................. 70
        5.1.4  Detectability Weights and Underlying
               Principles ...................................... 72
   5.2  Number of False Alarms ................................. 74
        5.2.1  Definition ...................................... 74
        5.2.2  Properties of the Number of False Alarms ........ 75
   5.3  Orders of Magnitudes and Asymptotic Estimates .......... 76
        5.3.1  Sufficient Condition of Meaningfulness .......... 77
        5.3.2  Asymptotics for the Meaningfulness Threshold
               k(l) ............................................ 78
        5.3.3  Lower Bound for the Meaningfulness Threshold
               k(l) ............................................ 80
   5.4  Properties of Meaningful Segments ...................... 81
        5.4.1  Continuous Extension of the Binomial Tail ....... 81
        5.4.2  Density of Aligned Points ....................... 83
   5.5  About the Precision p .................................. 86
   5.6  Bibliographic Notes .................................... 87
   5.7  Exercises .............................................. 91
        5.7.1  Elementary Properties of the Number of False
               Alarms .......................................... 91
        5.7.2  A Continuous Extension of the Binomial Law ...... 91
        5.7.3  A Necessary Condition of Meaningfulness ......... 92

6  Maximal Meaningfulness and the Exclusion Principle .......... 95
   6.1  Introduction ........................................... 95
   6.2  The Exclusion Principle ................................ 97
        6.2.1  Definition ...................................... 97
        6.2.2  Application of the Exclusion Principle to
               Alignments ...................................... 98
   6.3  Maximal Meaningful Segments ........................... 100
        6.3.1  A Conjecture About Maximality .................. 102
        6.3.2  A Simpler Conjecture ........................... 103
        6.3.3  Proof of Conjecture 1 Under Conjecture 2 ....... 105
        6.3.4  Partial Results About Conjecture 2 ............. 106
   6.4  Experimental Results .................................. 109
   6.5  Bibliographical Notes ................................. 112
   6.6  Exercise .............................................. 113
        6.6.1  Straight Contour Completion .................... 113

7  Modes of a Histogram ....................................... 115
   7.1  Introduction .......................................... 115
   7.2  Meaningful Intervals .................................. 115
   7.3  Maximal Meaningful Intervals .......................... 119
   7.4  Meaningful Gaps and Modes ............................. 122
   7.5  Structure Properties of Meaningful Intervals .......... 123
        7.5.1  Mean Value of an Interval ...................... 123
        7.5.2  Structure of Maximal Meaningful Intervals ...... 124
        7.5.3  The Reference Interval ......................... 126
   7.6  Applications and Experimental Results ................. 127
   7.7  Bibliographic Notes ................................... 129
   7.8  Exercises ............................................. 129
        7.8.1  Kullback-Leibler Distance ...................... 129
        7.8.2  A Qualitative a Contrario Hypothesis ........... 130

8  Vanishing Points ........................................... 133
   8.1  Introduction .......................................... 133
   8.2  Detection of Vanishing Points ......................... 133
        8.2.1  Meaningful Vanishing Regions ................... 134
        8.2.2  Probability of a Line Meeting a Vanishing
               Region ......................................... 135
        8.2.3  Partition of the Image Plane into Vanishing
               Regions ........................................ 137
        8.2.4  Final Remarks .................................. 141
   8.3  Experimental Results .................................. 144
   8.4  Bibliographic Notes ................................... 145
   8.5  Exercises ............................................. 150
        8.5.1  Poincare-Invariant Measure on the Set of
               Lines .......................................... 150
        8.5.2  Perimeter of a Convex Set ...................... 150
        8.5.3  Crofton's Formula ..............................

9  Contrasted Boundaries ...................................... 153
   9.1  Introduction .......................................... 153
   9.2  Level Lines and the Color Constancy Principle ......... 153
   9.3  A Contrario Definition of Contrasted Boundaries ....... 159
        9.3.1  Meaningful Boundaries and Edges ................ 159
        9.3.2  Thresholds ..................................... 162
        9.3.3  Maximality ..................................... 163
   9.4  Experiments ........................................... 164
   9.5  Twelve Objections and Questions ....................... 168
   9.6  Bibliographic Notes ................................... 174
   9.7  Exercise .............................................. 175
        9.7.1  The Bilinear Interpolation of an Image ......... 175

10 Variational or Meaningful Boundaries? ...................... 177
   10.1 Introduction .......................................... 177
   10.2 The "Snakes" Models ................................... 177
   10.3 Choice of the Contrast Function g ..................... 180
   10.4 Snakes Versus Meaningful Boundaries ................... 185
   10.5 Bibliographic Notes ................................... 188
   10.6 Exercise .............................................. 188
        10.6.1 Numerical Scheme ............................... 188

11 Clusters ................................................... 191
   11.1 Model ................................................. 191
        11.1.1 Low-Resolution Curves .......................... 191
        11.1.2 Meaningful Clusters ............................ 193
        11.1.3 Meaningful Isolated Clusters ................... 193
   11.2 Finding the Clusters .................................. 194
        11.2.1 Spanning Tree .................................. 194
        11.2.2 Construction of a Curve Enclosing a Given
               Cluster ........................................ 194
        11.2.3 Maximal Clusters ............................... 196
   11.3 Algorithm ............................................. 196
        11.3.1 Computation of the Minimal Spanning Tree ....... 196
        11.3.2 Detection of Meaningful Isolated Clusters ...... 197
   11.4 Experiments ........................................... 198
        11.4.1 Hand-Made Examples ............................. 198
        11.4.2 Experiment on a Real Image ..................... 198
   11.5 Bibliographic Notes ................................... 198
   11.6 Exercise .............................................. 201
        11.6.1 Poisson Point Process .......................... 201

12 Binocular Grouping ......................................... 203
   12.1 Introduction .......................................... 203
   12.2 Epipolar Geometry ..................................... 204
        12.2.1 The Epipolar Constraint ........................ 204
        12.2.2 The Seven-Point Algorithm ...................... 204
   12.3 Measuring Rigidity .................................... 205
        12.3.1 F-rigidity ..................................... 205
        12.3.2 A Computational Definition of Rigidity ......... 206
   12.4 Meaningful Rigid Sets ................................. 207
        12.4.1 The Ideal Case (Checking Rigidity) ............. 207
        12.4.2 The Case of Outliers ........................... 208
        12.4.3 The Case of Nonmatched Points .................. 210
        12.4.4 A Few Remarks .................................. 214
   12.5 Algorithms ............................................ 215
        12.5.1 Combinatorial Search ........................... 215
        12.5.2 Random Sampling Algorithm ...................... 216
        12.5.3 Optimized Random Sampling Algorithm (ORSA) ..... 217
   12.6 Experiments ........................................... 217
        12.6.1 Checking All Matchings ......................... 217
        12.6.2 Detecting Outliers ............................. 219
        12.6.3 Evaluation of the Optimized Random Sampling
               Algorithm ...................................... 219
   12.7 Bibliographic Notes ................................... 222
        12.7.1 Stereovision ................................... 222
        12.7.2 Estimating the Fundamental Matrix from Point
               Matches ........................................ 223
        12.7.3 Robust Methods ................................. 224
        12.7.4 Binocular Grouping ............................. 224
        12.7.5 Applications of Binocular Grouping ............. 225
   12.8 Exercise .............................................. 225
        12.8.1 Epipolar Geometry .............................. 225

13 A Psychophysical Study of the Heimholtz Principle .......... 227
   13.1 Introduction .......................................... 227
   13.2 Detection of Squares .................................. 227
        13.2.1 Protocol ....................................... 227
        13.2.2 Prediction ..................................... 228
        13.2.3 Results ........................................ 230
        13.2.4 Discussion ..................................... 231
   13.3 Detection of Alignments ............................... 231
        13.3.1 Protocol ....................................... 232
        13.3.2 Prediction ..................................... 233
        13.3.3 Results ........................................ 233
   13.4 Conclusion ............................................ 234
   13.5 Bibliographic Notes ................................... 235

14 Back to the Gestalt Programme .............................. 237
   14.1 Partial Gestalts Computed So Far ...................... 237
   14.2 Study of an Example ................................... 240
   14.3 The Limits of Every Partial Gestalt Detector .......... 242
        14.3.1 Conflicts Between Gestalt Detectors ............ 242
        14.3.2 Several Straight Lines or Several Circular
               Arcs? .......................................... 244
        14.3.3 Influence of the A-contrario Model ............. 246
   14.4 Bibliographic Notes ................................... 247

15 Other Theories, Discussion ................................. 249
   15.1 Lindenbaum's Theory ................................... 249
   15.2 Compositional Model and Image Parsing ................. 250
   15.3 Statistical Framework ................................. 252
        15.3.1 Hypothesis Testing ............................. 252
        15.3.2 Various False Alarms or Error Rates Compared
               to NFA ......................................... 253
        15.3.3 Comparison with Signal Detection Theory ........ 254
   15.4 Asymptotic Thresholds ................................. 255
   15.5 Should Probability Be Maximized or Minimized? ......... 256

References .................................................... 261

Index ......................................................... 271


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:28 2019. Размер: 19,527 bytes.
Посещение N 2303 c 12.10.2010