Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCarbon nanotubes and related structures: synthesis, characterization, functionalization, and applications / ed. by D.M.Guldi, N.Martín. - Weinheim: Wiley-VCH, 2010. - xxii, 539 p.: ill. - Incl. bibl. ref. - Ind.: p.525-539. - ISBN 978-3-527-32406-4
 

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors .......................................... XIX

1  Carbon Nanotubes and Related Structures: Production and
   Formation .................................................... 1
   Mark H. Rümmeli, Paola Ayala, and Thomas Pichler
   1.1  Introduction ............................................ 1
   1.2  Carbon Nanotube Production .............................. 3
        1.2.1  Arc Discharge .................................... 3
        1.2.2  Laser Ablation ................................... 4
        1.2.3  Chemical Vapor Deposition ........................ 5
        1.2.4  Miscellaneous Synthesis Methods .................. 6
   1.3  Catalysts ............................................... 6
        1.3.1  Metallic Catalysts ............................... 7
        1.3.2  Ceramic Catalysts ................................ 7
        1.3.3  Catalyst Free .................................... 8
   1.4  Growth Enhancement ...................................... 8
   1.5  Growth Mechanisms ....................................... 9
        1.5.1  Floating Catalyst Methods ....................... 10
        1.5.2  Supported Catalyst Routes ....................... 13
        1.5.3  Catalyst-Free Routes ............................ 15
   1.6  Functionalization ...................................... 16
   1.7  Purification ........................................... 16
   1.8  Future Perspectives .................................... 17
        References ............................................. 17
   
2  Theory of Electronic and Optical Properties of DNA-SWNT 
   Hybrids ..................................................... 23
   Slava V. Rotkin and Stacy E. Snyder
   2.1  Introduction ........................................... 23
   2.2  Physical Structure and Bonding in Nanotube-DNA
        Hybrids: A Short Review ................................ 24
   2.3  Quantum Mechanical Modeling of the Hybrid Structure:
        Tight Binding Band Structure Calculations .............. 26
   2.4  Self-Consistent Computation Scheme: Acting Potential ... 33
   2.5  Screening Factor and the Dielectric Permittivity ....... 34
   2.6  Polarization Component of Cohesion Energy of the 
        SWNT-ssDNA Hybrid ...................................... 35
   2.7  Optical Absorption of SWNT-DNA Hybrids ................. 40
   2.8  Summary ................................................ 47
   References .................................................. 48
   
3  Electrochemistry ............................................ 53
   Matteo Iurlo, Massimo Marcaccio, and Francesco Paolucci
   3.1  Introduction ........................................... 53
   3.2  Electronic Properties of SWNTs ......................... 53
   3.3  Electrode Potentials Versus Work Functions ............. 54
   3.4  Electrochemistry at SWNTs Versus Electrochemistry of
        SWNTs .................................................. 56
   3.5  Carbon Nanotubes for Electrochemical Energy Storage
        Devices ................................................ 59
   3.6  Carbon Nanotubes for Electrochemical Sensors and
        Biosensors ............................................. 59
   3.7  Electrochemistry of Carbon Nanotubes ................... 61
   3.8  Cyclic Voltammetric Investigations of Solutions of 
        Individual SWNTs ....................................... 63
   3.9  Vis-NIR Spectroelectrochemical Investigation of True
        Solutions of Unfunctionalized SWNTs .................... 66
   3.10 Standard Redox Potentials of Individual SWNTs in
        Solution ............................................... 67
   3.11 Fermi Level and Excitonic Binding Energy of the 
        Nanotubes .............................................. 71
   3.12 Conclusions and Perspectives ........................... 72
   References .................................................. 72
   
4  Photophysics ................................................ 77
   Tobias Hertel
   4.1  Introduction ........................................... 77
   4.2  Molecular Nanoparticles: Carbon Nanotubes Have it
        All .................................................... 77
   4.3  Understanding Optical Properties ....................... 78
        4.3.1  A Tight Binding Description ..................... 79
   4.4  The Coulomb Interaction and Bound States ............... 82
   4.5  Colloidal Chemistry Facilitates Detailed Study of
        Nanotube Optics ........................................ 87
   4.6  Excited State Dynamics and Nonlinear Optics ............ 92
   4.7  Outlook ................................................ 98
   References .................................................. 98

5  Noncovalent Functionalization of Carbon Nanotubes .......... 103
   Ma Ángeles Herranz and Nazario Martín
   5.1  I ntroduction ......................................... 103
   5.2  Early Insights in the Noncovalent Interaction of
        CNTs with Solvents and Classical Macrocyclic
        Scaffolds ............................................. 104
   5.3  Noncovalent Interactions of CNTs with Small Aromatic
        Molecules ............................................. 105
        5.3.1  Anthracene Derivatives ......................... 105
        5.3.2  Pyrene Derivatives ............................. 107
        5.3.3  Other Polyaromatic Derivatives ................. 112
   5.4  Noncovalent Interactions of CNTs with Heterocyclic
        Polyaromatic Systems .................................. 114
        5.4.1  Porphyrins, Phthalocyanines, and Sapphyrins .... 114
        5.4.2  Metallic Coordination .......................... 116
   5.5  Noncovalent Interactions of CNTs with Surfactants
        and Ionic Liquids ..................................... 118
   5.6  Noncovalent Interactions of CNTs with Polymers ........ 121
        5.6.1  Polymeric Amphiphiles .......................... 121
        5.6.2  Conjugated Polymers ............................ 123
        5.6.3  Biopolymers .................................... 125
   5.7  Optically Active SWCNTS ............................... 127
   5.8  Noncovalent Interactions of CNTs with Nanoparticles ... 127
   5.9  Summary and Conclusions ............................... 129
   References ................................................. 129

6  Covalent Functionalization of Carbon Nanotubes ............. 135
   Frank Hauke and Andreas Hirsch
   6.1  Introduction .......................................... 135
   6.2  Chemical Functionalization of Carbon Nanotubes ........ 136
        6.2.1  Derivatization Strategies ...................... 136
        6.2.2  Topology and Reactivity of Carbon Nanotubes .... 138
   6.3  Defect Group Functionalization of Carbon Nanotubes .... 140
        6.3.1  Defect Types and Defect Generation ............. 141
        6.3.2  Functional CNT-Derivatives by Defect
               Functionalizing Sequences ...................... 143
               6.3.2.1  Soluble CNT-Derivatives ............... 143
               6.3.2.2  Cofunctionalization of CNTs ........... 145
               6.3.2.3  Asymmetric End-Functionalization of
                        Carbon Nanotubes ...................... 146
               6.3.2.4  Nanoparticle and Quantum Dot: CNT
                        Conjugates ............................ 147
               6.3.2.5  Surface Attachment of CNTs ............ 148
               6.3.2.6  Molecular Electronic Devices Based
                        on Carbon Nanotubes ................... 149
               6.3.2.7  Carbon Nanotubes as Integrated Unit
                        in Donor/Acceptor Assemblies .......... 149
               6.3.2.8  Functional CNT Composite
                        Architectures ......................... 151
               6.3.2.9  Carbon Nanotubes as Polymer
                        Reinforcement Additives ............... 153
               6.3.2.10 Functional CNT Derivatives in the
                        Biological Context .................... 153
        6.3.3  Functional Group Interconversion ............... 153
   6.4  Direct Sidewall Functionalization of Carbon
        Nanotubes ............................................. 154
        6.4.1  Fluorination and Nucleophilic Substitution
               Reactions of Fluorinated Carbon Nanotubes ...... 155
        6.4.2  Hydrogenation of Carbon Nanotubes .............. 156
        6.4.3  Epoxidation of Carbon Nanotubes ................ 156
        6.4.4  [2+l]-Cycloaddition Reactions .................. 157
               6.4.4.1  The Addition of Carbenes and
                        Nitrenes .............................. 157
               6.4.4.2  Nucleophilic Cyclopropanation: The
                        Bingle Reaction ....................... 159
               6.4.4.3  Silylation of Carbon Nanotubes ........ 160
        6.4.5  1,3-Cycloaddition Reactions .................... 160
               6.4.5.1  Cycloaddition of Zwitterionic
                        Intermediates ......................... 160
               6.4.5.2  Azomethine Ylide Addition ............. 161
        6.4.6  [4+2]-Cycloaddition Reactions: Diels-Alder
               Reaction ....................................... 164
        6.4.7  Alkali Metal-Based Reduction of Carbon
               Nanotubes with Subsequent Sidewall
               Functionalization .............................. 166
               6.4.7.1  Naphthalenides as Electron Transfer
                        Reagents .............................. 166
               6.4.7.2  Reductive Alkylation of CNTs .......... 166
               6.4.7.3  Other Electron Transfer Mediators ..... 168
        6.4.8  Sidewall Functionalization of Carbon
               Nanotubes Based on Radical Chemistry ........... 169
               6.4.8.1  Carbon-Centered Free Radicals ......... 169
               6.4.8.2  Sulfur-Centered Free Radicals ......... 172
               6.4.8.3  Oxygen-Centered Free Radicals ......... 172
               6.4.8.4  Animation of Carbon Nanotube
                        Sidewalls ............................. 172
               6.4.8.5  Diazonium-Based Functionalization
                        Sequences ............................. 172
        6.4.9  Sidewall Functionalization Through
               Electrophilic Addition ......................... 175
        6.4.10 Sidewall Functionalization Through
               Nucleophilic Addition .......................... 176
               6.4.10.1 Carbon-Based Nucleophiles ............. 176
               6.4.10.2 Nitrogen-Based Nucleophiles ........... 178
        6.5  Conclusions ...................................... 179
        References ............................................ 179

7  Carbon-Based Nanomaterial Applications in Biomedicine ...... 199
   Prabhpreet Singh, Tatiana Da Ros, Kostas Kostarelos,
   Maurizio Prato, and Alberto Bianco
   7.1  Introduction .......................................... 199
   7.2  Carbon Nanotubes ...................................... 199
        7.2.1  Structures, Characteristics, and
               Derivatization of Carbon Nanotubes ............. 199
        7.2.2  Biological Applications of CNTs ................ 202
               7.2.2.1  Cell Penetration ...................... 202
               7.2.2.2  Drug Delivery ......................... 203
               7.2.2.3  Gene Delivery ......................... 205
               7.2.2.4  Other Anticancer Approaches ........... 206
               7.2.2.5  Neuron Interactions with CNTs ......... 208
               7.2.2.6  Antioxidant Properties of CNTs ........ 209
               7.2.2.7  Imaging using Carbon Nanotubes ........ 220
               7.2.2.8  Various Applications of Carbon
   Nanotubes .................................................. 222
        7.2.3  Carbon Nanotube Toxicity ....................... 211
   7.3  Carbon Nanohorns ...................................... 213
        7.3.1  Structure, Characteristics and
               Functionalization of SWCNHs .................... 213
        7.3.2  Biomedical Applications of Carbon Nanohorns .... 215
               7.3.2.1  Carbon Nanohorn as Potent Laser
                        Therapeutic Agent ..................... 216
               7.3.2.2  Carbon Nanohorn for Drug Delivery ..... 216
               7.3.2.3  Toxicity of Carbon Nanohorns .......... 219
   7.4  Carbon Nanodiamonds ................................... 219
        7.4.1  Introduction ................................... 219
        7.4.2  Carbon Nanodiamond as Delivery Vehicle ......... 222
        7.4.3  Carbon Nanodiamond as Biomarker for Cellular
               Imaging ........................................ 222
        7.4.4  Biocompatibility and Toxicity .................. 224
   7.5  Conclusions ........................................... 224
        References ............................................ 225

8  Ground and Excited State Charge Transfer and its
   Implications ............................................... 233
   Vito Sgobba and Dirk M. Guldi
   8.1  Introduction .......................................... 233
   8.2  Ground and Excited State Features ..................... 235
   8.3  Ground State Charge Transfer - CNT as Electron
        Acceptors ............................................. 238
        8.3.1  Chemical Reduction ............................. 238
        8.3.2  Electrochemical Reduction ...................... 239
        8.3.3  Reduction by Doping ............................ 241
        8.3.4  Miscellaneous .................................. 242
   8.4  Ground State Charge Transfer - CNT as Electron
        Donors ................................................ 242
        8.4.1  Chemical Oxidation ............................. 242
        8.4.2  Electrochemical Oxidation ...................... 243
        8.4.3  Oxidation by Doping ............................ 243
   8.5  Excited State Charge Transfer - CNT as Excited State
        Electron Acceptor ..................................... 245
        8.5.1  Covalent Electron Donor-Acceptor Conjugates .... 245
        8.5.2  Noncovalent Electron Donor-Acceptor Hybrids .... 246
   8.6  Excited State Charge Transfer - CNT as Ground
        State Electron Acceptor ............................... 247
        8.6.1  Covalent Electron Donor-Acceptor Conjugates .... 247
        8.6.2  Noncovalent Electron Donor-Acceptor Hybrids .... 254
   8.7  Excited State Charge Transfer - CNT as Ground
        State Electron Donor .................................. 264
        8.7.1  Noncovalent Electron Donor-Acceptor Hybrids .... 264
        8.7.2  Charge Transfer Interactions - CNT and
               Polymers ....................................... 266
   8.8  Implications of Ground State Charge Transfer .......... 269
        8.8.1  Conducting Electrode Materials ................. 269
        8.8.2  Counter Electrodes for DSSC .................... 270
   8.9  Implications of Excited State Charge Transfer ......... 271
        8.9.1  Active Component in Photoactive Layer .......... 271
        8.9.2  Gas Sensors .................................... 273
   References ................................................. 274

9  Photovoltaic Devices Based on Carbon Nanotubes and
   Related Structures ......................................... 291
   Emmanuel Kymakis
   9.1  Introduction .......................................... 291
   9.2  Photovoltaic Cells Based on Carbon Nanotubes .......... 292
        9.2.1  Carbon Nanotubes as Electron Acceptors in
               Organic PVs .................................... 292
        9.2.2  Hole Collecting Electrodes ..................... 297
   9.3  Related Structures .................................... 298
   9.4  Future Directions ..................................... 300
   References ................................................. 301

10 Layer-by-Layer Assembly of Multifunctional Carbon
   Nanotube Thin Films ........................................ 305
   Bong Sup Shim and Nicholas A. Kotov
   10.1 Introduction .......................................... 305
   10.2 Structure and Properties of С NTs ..................... 306
   10.3 Structural Organization in Multilayers of Carbon
        Nanotubes ............................................. 307
   10.4 Electrical Conductor Applications ..................... 309
   10.5 Sensor Applications ................................... 311
   10.6 Fuel Cell Applications ................................ 313
   10.7 Nano-/Microshell LBL Coatings and Biomedical
        Applications .......................................... 314
   10.8 Conclusions ........................................... 315
   References ................................................. 316

11 Carbon Nanotubes for Catalytic Applications ................ 321
   Eva Castillejos and Philippe Serp
   11.1 Introduction .......................................... 321
   11.2 Macroscopic shaping of CNTs ........................... 322
   11.3 Specific Metal-Support Interaction .................... 323
   11.4 Dispersion of the Active Phase ........................ 327
        11.4.1 Surface Area and Porosity of CNT ............... 327
        11.4.2 CNT Surface Activation to Improve Particle
               Dispersion ..................................... 328
        11.4.3 Specific Interactions of Metal Precursors
               with Surface Defects of CNTs and CNFs .......... 330
        11.4.4 Influence of Catalyst Preparation Procedure
               on Metal Loading and Dispersion ................ 330
   11.5 Electrically and Thermally Conductive Supports ........ 332
        11.5.1 Electrical Conductive Supports ................. 332
        11.5.2 Thermally Conductive Supports .................. 334
   11.6 Mass Transfer Limitations ............................. 335
   11.7 Confinement Effect .................................... 338
   11.8 Conclusion ............................................ 342
   References ................................................. 343

12 Carbon Nanotubes as Containers ............................. 349
   Thomas W. Chamberlain, Maria del Carmen Gimenez-Lopez,
   and Andrei N. Khlobystov
   12.1 Introduction .......................................... 349
   12.2 Mechanisms of Nanotube Filling ........................ 350
   12.3 Fullerenes as Guest Molecules ......................... 353
        12.3.1 Fullerene C60 .................................. 353
        12.3.2 Higher Fullerenes .............................. 359
        12.3.3 Endohedral Fullerenes .......................... 361
        12.3.4 Functionalized Fullerenes ...................... 365
   12.4 Other Types of Molecules .............................. 369
        12.4.1 Molecules Without Metal Atoms .................. 369
        12.4.2 Organometallic and Coordination Compounds ...... 372
   12.5 Ionic Compounds ....................................... 374
        12.5.1 Salts .......................................... 374
        12.5.2 Oxides and Hydroxides .......................... 377
        12.5.3 Other Inorganic Materials ...................... 378
   12.6 Nanoparticles in Nanotubes ............................ 378
   12.7 Concluding Remarks .................................... 380
   References ................................................. 380

13 Carbon Nanohorn ............................................ 385
   Masako Yudasaka and Sumio Iijima ........................... 385
   13.1 Introduction .......................................... 385
   13.2 Production ............................................ 385
   13.3 Structure and Growth Mechanism ........................ 386
   13.4 Properties ............................................ 386
   13.5 Functionalization ..................................... 389
        13.5.1 Material Incorporation and Release ............. 389
        13.5.2 Chemical Modification of Structure Defects ..... 390
        13.5.3 Chemical Functionalization at Hole Edges ....... 391
        13.5.4 Physical Modification .......................... 394
   13.6 Toxicity .............................................. 395
   13.7 Drug Delivery Applications ............................ 397
   13.8 Summary ............................................... 398
   References ................................................. 399

14 Self-Organization of Nanographenes ......................... 405
   Wojciech Pisula, Xinliang Feng, and Klaus Müllen
   14.1 Introduction .......................................... 405
        14.1.1 Graphene, Graphene Nanoribbon, and
               Nanographene ................................... 405
        14.1.2 Organization of Nanographenes .................. 409
   14.2 Single Sheets of Nanographenes ........................ 410
   14.3 Organization in the Bulk State ........................ 412
        14.3.1 Liquid Crystalline Columnar Phases ............. 412
        14.3.2 Helical Packing of Discotic Nanographenes ...... 416
        14.3.3 Complementary Interactions ..................... 419
   14.4 Charge Carrier Transport Along Nanographene Stacks .... 423
   14.5 Solution Aggregation and Fiber Formation .............. 425
   14.6 Solution Alignment on Surfaces ........................ 433
   14.7 Thermal Processing .................................... 437
   14.8 Nanographenes in Heterojunctions for Solar Cells ...... 442
   14.9 Processing of Nondiscotic Nanographenes ............... 443
   14.10 Conclusions .......................................... 444
   References ................................................. 445

15 Endohedrals ................................................ 455
   Lai Feng, Takeshi Akasaka, and Shigeru Nagase
   15.1 Introduction .......................................... 455
   15.2 Recent Investigations in the Synthesis of Endohedral
        Metallofullerenes ..................................... 456
        15.2.1 The Reactive Gas Atmosphere .................... 456
        15.2.2 The Solid Additive ............................. 457
   15.3 Advances in Nonchromatographic Techniques for
        Separation of Endohedral Metallofullerenes ............ 457
        15.3.1 Separation by Electrochemical Method ........... 457
        15.3.2 Separation by Other Chemical Methods ........... 458
   15.4 Structures of Endohedral Metallofullerenes Determined
        by X-Ray Crystallographic Method ...................... 460
        15.4.1 Monometallofullerenes .......................... 460
        15.4.2 Dimetallofullerenes ............................ 462
        15.4.3 Metallic Carbide Fullerenes and Metallic
               Oxide Fullerenes ............................... 464
        15.4.4 Trimetallic Nitride Fullerenes ................. 465
   15.5 Electrochemical Properties of Endohedral
        Metallofullerenes ..................................... 468
   15.6 Chemical Reactivities of Endohedral
        Metallofullerenes ..................................... 471
        15.6.1 Reductions and Oxidations ...................... 471
        15.6.2 Cycloadditions ................................. 471
               15.6.2.1 Diels-Alder Reaction .................. 471
               15.6.2.2 Prato Reactions ....................... 472
               15.6.2.3 Carbene Reactions ..................... 473
               15.6.2.4 Bis-Silylation ........................ 474
               15.6.2.5 Cycloaddition via a Zwitterion
                        Approach .............................. 474
        15.6.3 Nucleophilic Addition .......................... 475
        15.6.4 Radical Reactions .............................. 476
   15.7 Applications of Endohedral Metallofullerenes .......... 477
        15.7.1 Magnetic Resonance Imaging (MRI) Contrast
               Agents ......................................... 477
        15.7.2 Peapod and Nanorod ............................. 479
        15.7.3 Electron Donor/Acceptor Conjugate .............. 480
   15.8 Concluding Remarks .................................... 480
        References ............................................ 481

16 Carbon Nanostructures: Calculations of Their Energetics,
   Thermodynamics, and Stability .............................. 491
   Zdeněk Slanina, Filip Uhlík, Shyi-Long Lee, Takeshi
   Akasaka, and Shigeru Nagase
   16.1 Introduction .......................................... 491
   16.2 Energetics and Thermodynamics of Clusters ............. 492
   16.3 Stabilities of Empty Fullerenes ....................... 495
   16.4 Stabilities of Metallofullerenes ...................... 497
   16.5 Stabilities of Nonmetal Endohedrals ................... 505
   16.6 Kinetic Control ....................................... 507
   References ................................................. 511

Index ......................................................... 525


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:28 2019. Размер: 29,524 bytes.
Посещение N 2085 c 12.10.2010