Preface ........................................................ XV
List of Contributors .......................................... XIX
1 Carbon Nanotubes and Related Structures: Production and
Formation .................................................... 1
Mark H. Rümmeli, Paola Ayala, and Thomas Pichler
1.1 Introduction ............................................ 1
1.2 Carbon Nanotube Production .............................. 3
1.2.1 Arc Discharge .................................... 3
1.2.2 Laser Ablation ................................... 4
1.2.3 Chemical Vapor Deposition ........................ 5
1.2.4 Miscellaneous Synthesis Methods .................. 6
1.3 Catalysts ............................................... 6
1.3.1 Metallic Catalysts ............................... 7
1.3.2 Ceramic Catalysts ................................ 7
1.3.3 Catalyst Free .................................... 8
1.4 Growth Enhancement ...................................... 8
1.5 Growth Mechanisms ....................................... 9
1.5.1 Floating Catalyst Methods ....................... 10
1.5.2 Supported Catalyst Routes ....................... 13
1.5.3 Catalyst-Free Routes ............................ 15
1.6 Functionalization ...................................... 16
1.7 Purification ........................................... 16
1.8 Future Perspectives .................................... 17
References ............................................. 17
2 Theory of Electronic and Optical Properties of DNA-SWNT
Hybrids ..................................................... 23
Slava V. Rotkin and Stacy E. Snyder
2.1 Introduction ........................................... 23
2.2 Physical Structure and Bonding in Nanotube-DNA
Hybrids: A Short Review ................................ 24
2.3 Quantum Mechanical Modeling of the Hybrid Structure:
Tight Binding Band Structure Calculations .............. 26
2.4 Self-Consistent Computation Scheme: Acting Potential ... 33
2.5 Screening Factor and the Dielectric Permittivity ....... 34
2.6 Polarization Component of Cohesion Energy of the
SWNT-ssDNA Hybrid ...................................... 35
2.7 Optical Absorption of SWNT-DNA Hybrids ................. 40
2.8 Summary ................................................ 47
References .................................................. 48
3 Electrochemistry ............................................ 53
Matteo Iurlo, Massimo Marcaccio, and Francesco Paolucci
3.1 Introduction ........................................... 53
3.2 Electronic Properties of SWNTs ......................... 53
3.3 Electrode Potentials Versus Work Functions ............. 54
3.4 Electrochemistry at SWNTs Versus Electrochemistry of
SWNTs .................................................. 56
3.5 Carbon Nanotubes for Electrochemical Energy Storage
Devices ................................................ 59
3.6 Carbon Nanotubes for Electrochemical Sensors and
Biosensors ............................................. 59
3.7 Electrochemistry of Carbon Nanotubes ................... 61
3.8 Cyclic Voltammetric Investigations of Solutions of
Individual SWNTs ....................................... 63
3.9 Vis-NIR Spectroelectrochemical Investigation of True
Solutions of Unfunctionalized SWNTs .................... 66
3.10 Standard Redox Potentials of Individual SWNTs in
Solution ............................................... 67
3.11 Fermi Level and Excitonic Binding Energy of the
Nanotubes .............................................. 71
3.12 Conclusions and Perspectives ........................... 72
References .................................................. 72
4 Photophysics ................................................ 77
Tobias Hertel
4.1 Introduction ........................................... 77
4.2 Molecular Nanoparticles: Carbon Nanotubes Have it
All .................................................... 77
4.3 Understanding Optical Properties ....................... 78
4.3.1 A Tight Binding Description ..................... 79
4.4 The Coulomb Interaction and Bound States ............... 82
4.5 Colloidal Chemistry Facilitates Detailed Study of
Nanotube Optics ........................................ 87
4.6 Excited State Dynamics and Nonlinear Optics ............ 92
4.7 Outlook ................................................ 98
References .................................................. 98
5 Noncovalent Functionalization of Carbon Nanotubes .......... 103
Ma Ángeles Herranz and Nazario Martín
5.1 I ntroduction ......................................... 103
5.2 Early Insights in the Noncovalent Interaction of
CNTs with Solvents and Classical Macrocyclic
Scaffolds ............................................. 104
5.3 Noncovalent Interactions of CNTs with Small Aromatic
Molecules ............................................. 105
5.3.1 Anthracene Derivatives ......................... 105
5.3.2 Pyrene Derivatives ............................. 107
5.3.3 Other Polyaromatic Derivatives ................. 112
5.4 Noncovalent Interactions of CNTs with Heterocyclic
Polyaromatic Systems .................................. 114
5.4.1 Porphyrins, Phthalocyanines, and Sapphyrins .... 114
5.4.2 Metallic Coordination .......................... 116
5.5 Noncovalent Interactions of CNTs with Surfactants
and Ionic Liquids ..................................... 118
5.6 Noncovalent Interactions of CNTs with Polymers ........ 121
5.6.1 Polymeric Amphiphiles .......................... 121
5.6.2 Conjugated Polymers ............................ 123
5.6.3 Biopolymers .................................... 125
5.7 Optically Active SWCNTS ............................... 127
5.8 Noncovalent Interactions of CNTs with Nanoparticles ... 127
5.9 Summary and Conclusions ............................... 129
References ................................................. 129
6 Covalent Functionalization of Carbon Nanotubes ............. 135
Frank Hauke and Andreas Hirsch
6.1 Introduction .......................................... 135
6.2 Chemical Functionalization of Carbon Nanotubes ........ 136
6.2.1 Derivatization Strategies ...................... 136
6.2.2 Topology and Reactivity of Carbon Nanotubes .... 138
6.3 Defect Group Functionalization of Carbon Nanotubes .... 140
6.3.1 Defect Types and Defect Generation ............. 141
6.3.2 Functional CNT-Derivatives by Defect
Functionalizing Sequences ...................... 143
6.3.2.1 Soluble CNT-Derivatives ............... 143
6.3.2.2 Cofunctionalization of CNTs ........... 145
6.3.2.3 Asymmetric End-Functionalization of
Carbon Nanotubes ...................... 146
6.3.2.4 Nanoparticle and Quantum Dot: CNT
Conjugates ............................ 147
6.3.2.5 Surface Attachment of CNTs ............ 148
6.3.2.6 Molecular Electronic Devices Based
on Carbon Nanotubes ................... 149
6.3.2.7 Carbon Nanotubes as Integrated Unit
in Donor/Acceptor Assemblies .......... 149
6.3.2.8 Functional CNT Composite
Architectures ......................... 151
6.3.2.9 Carbon Nanotubes as Polymer
Reinforcement Additives ............... 153
6.3.2.10 Functional CNT Derivatives in the
Biological Context .................... 153
6.3.3 Functional Group Interconversion ............... 153
6.4 Direct Sidewall Functionalization of Carbon
Nanotubes ............................................. 154
6.4.1 Fluorination and Nucleophilic Substitution
Reactions of Fluorinated Carbon Nanotubes ...... 155
6.4.2 Hydrogenation of Carbon Nanotubes .............. 156
6.4.3 Epoxidation of Carbon Nanotubes ................ 156
6.4.4 [2+l]-Cycloaddition Reactions .................. 157
6.4.4.1 The Addition of Carbenes and
Nitrenes .............................. 157
6.4.4.2 Nucleophilic Cyclopropanation: The
Bingle Reaction ....................... 159
6.4.4.3 Silylation of Carbon Nanotubes ........ 160
6.4.5 1,3-Cycloaddition Reactions .................... 160
6.4.5.1 Cycloaddition of Zwitterionic
Intermediates ......................... 160
6.4.5.2 Azomethine Ylide Addition ............. 161
6.4.6 [4+2]-Cycloaddition Reactions: Diels-Alder
Reaction ....................................... 164
6.4.7 Alkali Metal-Based Reduction of Carbon
Nanotubes with Subsequent Sidewall
Functionalization .............................. 166
6.4.7.1 Naphthalenides as Electron Transfer
Reagents .............................. 166
6.4.7.2 Reductive Alkylation of CNTs .......... 166
6.4.7.3 Other Electron Transfer Mediators ..... 168
6.4.8 Sidewall Functionalization of Carbon
Nanotubes Based on Radical Chemistry ........... 169
6.4.8.1 Carbon-Centered Free Radicals ......... 169
6.4.8.2 Sulfur-Centered Free Radicals ......... 172
6.4.8.3 Oxygen-Centered Free Radicals ......... 172
6.4.8.4 Animation of Carbon Nanotube
Sidewalls ............................. 172
6.4.8.5 Diazonium-Based Functionalization
Sequences ............................. 172
6.4.9 Sidewall Functionalization Through
Electrophilic Addition ......................... 175
6.4.10 Sidewall Functionalization Through
Nucleophilic Addition .......................... 176
6.4.10.1 Carbon-Based Nucleophiles ............. 176
6.4.10.2 Nitrogen-Based Nucleophiles ........... 178
6.5 Conclusions ...................................... 179
References ............................................ 179
7 Carbon-Based Nanomaterial Applications in Biomedicine ...... 199
Prabhpreet Singh, Tatiana Da Ros, Kostas Kostarelos,
Maurizio Prato, and Alberto Bianco
7.1 Introduction .......................................... 199
7.2 Carbon Nanotubes ...................................... 199
7.2.1 Structures, Characteristics, and
Derivatization of Carbon Nanotubes ............. 199
7.2.2 Biological Applications of CNTs ................ 202
7.2.2.1 Cell Penetration ...................... 202
7.2.2.2 Drug Delivery ......................... 203
7.2.2.3 Gene Delivery ......................... 205
7.2.2.4 Other Anticancer Approaches ........... 206
7.2.2.5 Neuron Interactions with CNTs ......... 208
7.2.2.6 Antioxidant Properties of CNTs ........ 209
7.2.2.7 Imaging using Carbon Nanotubes ........ 220
7.2.2.8 Various Applications of Carbon
Nanotubes .................................................. 222
7.2.3 Carbon Nanotube Toxicity ....................... 211
7.3 Carbon Nanohorns ...................................... 213
7.3.1 Structure, Characteristics and
Functionalization of SWCNHs .................... 213
7.3.2 Biomedical Applications of Carbon Nanohorns .... 215
7.3.2.1 Carbon Nanohorn as Potent Laser
Therapeutic Agent ..................... 216
7.3.2.2 Carbon Nanohorn for Drug Delivery ..... 216
7.3.2.3 Toxicity of Carbon Nanohorns .......... 219
7.4 Carbon Nanodiamonds ................................... 219
7.4.1 Introduction ................................... 219
7.4.2 Carbon Nanodiamond as Delivery Vehicle ......... 222
7.4.3 Carbon Nanodiamond as Biomarker for Cellular
Imaging ........................................ 222
7.4.4 Biocompatibility and Toxicity .................. 224
7.5 Conclusions ........................................... 224
References ............................................ 225
8 Ground and Excited State Charge Transfer and its
Implications ............................................... 233
Vito Sgobba and Dirk M. Guldi
8.1 Introduction .......................................... 233
8.2 Ground and Excited State Features ..................... 235
8.3 Ground State Charge Transfer - CNT as Electron
Acceptors ............................................. 238
8.3.1 Chemical Reduction ............................. 238
8.3.2 Electrochemical Reduction ...................... 239
8.3.3 Reduction by Doping ............................ 241
8.3.4 Miscellaneous .................................. 242
8.4 Ground State Charge Transfer - CNT as Electron
Donors ................................................ 242
8.4.1 Chemical Oxidation ............................. 242
8.4.2 Electrochemical Oxidation ...................... 243
8.4.3 Oxidation by Doping ............................ 243
8.5 Excited State Charge Transfer - CNT as Excited State
Electron Acceptor ..................................... 245
8.5.1 Covalent Electron Donor-Acceptor Conjugates .... 245
8.5.2 Noncovalent Electron Donor-Acceptor Hybrids .... 246
8.6 Excited State Charge Transfer - CNT as Ground
State Electron Acceptor ............................... 247
8.6.1 Covalent Electron Donor-Acceptor Conjugates .... 247
8.6.2 Noncovalent Electron Donor-Acceptor Hybrids .... 254
8.7 Excited State Charge Transfer - CNT as Ground
State Electron Donor .................................. 264
8.7.1 Noncovalent Electron Donor-Acceptor Hybrids .... 264
8.7.2 Charge Transfer Interactions - CNT and
Polymers ....................................... 266
8.8 Implications of Ground State Charge Transfer .......... 269
8.8.1 Conducting Electrode Materials ................. 269
8.8.2 Counter Electrodes for DSSC .................... 270
8.9 Implications of Excited State Charge Transfer ......... 271
8.9.1 Active Component in Photoactive Layer .......... 271
8.9.2 Gas Sensors .................................... 273
References ................................................. 274
9 Photovoltaic Devices Based on Carbon Nanotubes and
Related Structures ......................................... 291
Emmanuel Kymakis
9.1 Introduction .......................................... 291
9.2 Photovoltaic Cells Based on Carbon Nanotubes .......... 292
9.2.1 Carbon Nanotubes as Electron Acceptors in
Organic PVs .................................... 292
9.2.2 Hole Collecting Electrodes ..................... 297
9.3 Related Structures .................................... 298
9.4 Future Directions ..................................... 300
References ................................................. 301
10 Layer-by-Layer Assembly of Multifunctional Carbon
Nanotube Thin Films ........................................ 305
Bong Sup Shim and Nicholas A. Kotov
10.1 Introduction .......................................... 305
10.2 Structure and Properties of С NTs ..................... 306
10.3 Structural Organization in Multilayers of Carbon
Nanotubes ............................................. 307
10.4 Electrical Conductor Applications ..................... 309
10.5 Sensor Applications ................................... 311
10.6 Fuel Cell Applications ................................ 313
10.7 Nano-/Microshell LBL Coatings and Biomedical
Applications .......................................... 314
10.8 Conclusions ........................................... 315
References ................................................. 316
11 Carbon Nanotubes for Catalytic Applications ................ 321
Eva Castillejos and Philippe Serp
11.1 Introduction .......................................... 321
11.2 Macroscopic shaping of CNTs ........................... 322
11.3 Specific Metal-Support Interaction .................... 323
11.4 Dispersion of the Active Phase ........................ 327
11.4.1 Surface Area and Porosity of CNT ............... 327
11.4.2 CNT Surface Activation to Improve Particle
Dispersion ..................................... 328
11.4.3 Specific Interactions of Metal Precursors
with Surface Defects of CNTs and CNFs .......... 330
11.4.4 Influence of Catalyst Preparation Procedure
on Metal Loading and Dispersion ................ 330
11.5 Electrically and Thermally Conductive Supports ........ 332
11.5.1 Electrical Conductive Supports ................. 332
11.5.2 Thermally Conductive Supports .................. 334
11.6 Mass Transfer Limitations ............................. 335
11.7 Confinement Effect .................................... 338
11.8 Conclusion ............................................ 342
References ................................................. 343
12 Carbon Nanotubes as Containers ............................. 349
Thomas W. Chamberlain, Maria del Carmen Gimenez-Lopez,
and Andrei N. Khlobystov
12.1 Introduction .......................................... 349
12.2 Mechanisms of Nanotube Filling ........................ 350
12.3 Fullerenes as Guest Molecules ......................... 353
12.3.1 Fullerene C60 .................................. 353
12.3.2 Higher Fullerenes .............................. 359
12.3.3 Endohedral Fullerenes .......................... 361
12.3.4 Functionalized Fullerenes ...................... 365
12.4 Other Types of Molecules .............................. 369
12.4.1 Molecules Without Metal Atoms .................. 369
12.4.2 Organometallic and Coordination Compounds ...... 372
12.5 Ionic Compounds ....................................... 374
12.5.1 Salts .......................................... 374
12.5.2 Oxides and Hydroxides .......................... 377
12.5.3 Other Inorganic Materials ...................... 378
12.6 Nanoparticles in Nanotubes ............................ 378
12.7 Concluding Remarks .................................... 380
References ................................................. 380
13 Carbon Nanohorn ............................................ 385
Masako Yudasaka and Sumio Iijima ........................... 385
13.1 Introduction .......................................... 385
13.2 Production ............................................ 385
13.3 Structure and Growth Mechanism ........................ 386
13.4 Properties ............................................ 386
13.5 Functionalization ..................................... 389
13.5.1 Material Incorporation and Release ............. 389
13.5.2 Chemical Modification of Structure Defects ..... 390
13.5.3 Chemical Functionalization at Hole Edges ....... 391
13.5.4 Physical Modification .......................... 394
13.6 Toxicity .............................................. 395
13.7 Drug Delivery Applications ............................ 397
13.8 Summary ............................................... 398
References ................................................. 399
14 Self-Organization of Nanographenes ......................... 405
Wojciech Pisula, Xinliang Feng, and Klaus Müllen
14.1 Introduction .......................................... 405
14.1.1 Graphene, Graphene Nanoribbon, and
Nanographene ................................... 405
14.1.2 Organization of Nanographenes .................. 409
14.2 Single Sheets of Nanographenes ........................ 410
14.3 Organization in the Bulk State ........................ 412
14.3.1 Liquid Crystalline Columnar Phases ............. 412
14.3.2 Helical Packing of Discotic Nanographenes ...... 416
14.3.3 Complementary Interactions ..................... 419
14.4 Charge Carrier Transport Along Nanographene Stacks .... 423
14.5 Solution Aggregation and Fiber Formation .............. 425
14.6 Solution Alignment on Surfaces ........................ 433
14.7 Thermal Processing .................................... 437
14.8 Nanographenes in Heterojunctions for Solar Cells ...... 442
14.9 Processing of Nondiscotic Nanographenes ............... 443
14.10 Conclusions .......................................... 444
References ................................................. 445
15 Endohedrals ................................................ 455
Lai Feng, Takeshi Akasaka, and Shigeru Nagase
15.1 Introduction .......................................... 455
15.2 Recent Investigations in the Synthesis of Endohedral
Metallofullerenes ..................................... 456
15.2.1 The Reactive Gas Atmosphere .................... 456
15.2.2 The Solid Additive ............................. 457
15.3 Advances in Nonchromatographic Techniques for
Separation of Endohedral Metallofullerenes ............ 457
15.3.1 Separation by Electrochemical Method ........... 457
15.3.2 Separation by Other Chemical Methods ........... 458
15.4 Structures of Endohedral Metallofullerenes Determined
by X-Ray Crystallographic Method ...................... 460
15.4.1 Monometallofullerenes .......................... 460
15.4.2 Dimetallofullerenes ............................ 462
15.4.3 Metallic Carbide Fullerenes and Metallic
Oxide Fullerenes ............................... 464
15.4.4 Trimetallic Nitride Fullerenes ................. 465
15.5 Electrochemical Properties of Endohedral
Metallofullerenes ..................................... 468
15.6 Chemical Reactivities of Endohedral
Metallofullerenes ..................................... 471
15.6.1 Reductions and Oxidations ...................... 471
15.6.2 Cycloadditions ................................. 471
15.6.2.1 Diels-Alder Reaction .................. 471
15.6.2.2 Prato Reactions ....................... 472
15.6.2.3 Carbene Reactions ..................... 473
15.6.2.4 Bis-Silylation ........................ 474
15.6.2.5 Cycloaddition via a Zwitterion
Approach .............................. 474
15.6.3 Nucleophilic Addition .......................... 475
15.6.4 Radical Reactions .............................. 476
15.7 Applications of Endohedral Metallofullerenes .......... 477
15.7.1 Magnetic Resonance Imaging (MRI) Contrast
Agents ......................................... 477
15.7.2 Peapod and Nanorod ............................. 479
15.7.3 Electron Donor/Acceptor Conjugate .............. 480
15.8 Concluding Remarks .................................... 480
References ............................................ 481
16 Carbon Nanostructures: Calculations of Their Energetics,
Thermodynamics, and Stability .............................. 491
Zdeněk Slanina, Filip Uhlík, Shyi-Long Lee, Takeshi
Akasaka, and Shigeru Nagase
16.1 Introduction .......................................... 491
16.2 Energetics and Thermodynamics of Clusters ............. 492
16.3 Stabilities of Empty Fullerenes ....................... 495
16.4 Stabilities of Metallofullerenes ...................... 497
16.5 Stabilities of Nonmetal Endohedrals ................... 505
16.6 Kinetic Control ....................................... 507
References ................................................. 511
Index ......................................................... 525
|