Applied mathematical sciences; 166 (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBochev P.B. Least-squares finite element methods / P.B.Bochev, M.D.Gunzburger. - New York: Springer, 2009. - xxii, 660 p.: ill. - (Applied mathematical sciences; 166). - Incl. bibl. ref. - Ind.: p.647-660. - ISBN 978-0-387-30888-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
      Part I Survey of Variational Principles and Associated 
                     Finite Element Methods

1  Classical Variational Methods ................................ 3
   1.1  Variational Methods for Operator Equations .............. 4
   1.2  A Taxonomy of Classical Variational Formulations ........ 8
        1.2.1  Weakly Coercive Problems ......................... 8
        1.2.2  Strongly Coercive Problems ....................... 9
        1.2.3  Mixed Variational Problems ...................... 10
        1.2.4  Relations Between Variational Problems and 
               Optimization Problems ........................... 12
   1.3  Approximation of Solutions of Variational Problems ..... 15
        1.3.1  Weakly and Strongly Coercive Variational 
               Problems ........................................ 15
        1.3.2  Mixed Variational Problems ...................... 18
   1.4  Examples ............................................... 22
        1.4.1  The Poisson Equation ............................ 22
        1.4.2  The Equations of Linear Elasticity .............. 25
        1.4.3  The Stokes Equations ............................ 26
        1.4.4  The Helmholtz Equation .......................... 28
        1.4.5  A Scalar Linear Advection-Diffusion-Reaction
               Equation ........................................ 30
        1.4.6  The Navier-Stokes Equations ..................... 30
   1.5  A Comparative Summary of Classical Finite Element
        Methods ................................................ 31

2  Alternative Variational Formulations ........................ 35
   2.1  Modified Variational Principles ........................ 36
        2.1.1  Enhanced and Stabilized Methods for Weakly
               Coercive Problems ............................... 36
        2.1.2  Stabilized Methods for Strongly Coercive
               Problems ........................................ 46
   2.2  Least-Squares Principles ............................... 49
        2.2.1  A Straightforward Least-Squares Finite Element
               Method .......................................... 51
        2.2.2  Practical Least-Squares Finite Element
               Methods ......................................... 53
        2.2.3  Norm-Equivalence Versus Practicality ............ 58
        2.2.4  Some Questions and Answers ...................... 60
   2.3  Putting Things in Perspective and What to Expect from
        the Book ............................................... 62

 Part II Abstract Theory of Least-Squares Finite Element Methods

3  Mathematical Foundations of Least-Squares Finite Element
   Methods ..................................................... 69
   3.1  Least-Squares Principles for Linear Operator Equations
        in Hilbert Spaces ...................................... 70
        3.1.1  Problems with Zero Nullity ...................... 71
        3.1.2  Problems with Positive Nullity .................. 73
   3.2  Application to Partial Differential Equations .......... 75
        3.2.1  Energy Balances ................................. 76
        3.2.2  Continuous Least-Squares Principles ............. 77
   3.3  General Discrete Least-Squares Principles .............. 80
        3.3.1  Error Analysis .................................. 82
        3.3.2  The Need for Continuous Least-Squares
               Principles ...................................... 84
   3.4  Binding Discrete Least-Squares Principles to Partial
        Differential Equations ................................. 85
        3.4.1  Transformations from Continuous to Discrete
               Least-Squares Principles ........................ 86
   3.5  Taxonomy of Conforming Discrete Least-Squares
        Principles and their Analysis .......................... 90
        3.5.1  Compliant Discrete Least-Squares Principles ..... 92
        3.5.2  Norm-Equivalent Discrete Least-Squares
               Principles ...................................... 94
        3.5.3  Quasi-Norm-Equivalent Discrete Least-Squares
               Principles ...................................... 96
        3.5.4  Summary Review of Discrete Least-Squares
               Principles ..................................... 100

4  The Agmon-Douglis-Nirenberg Setting for Least-Squares
   Finite Element Methods ..................................... 103
   4.1  Transformations to First-Order Systems ................ 105
   4.2  Energy Balances ....................................... 106
        4.2.1  Homogeneous Elliptic Systems ................... 107
        4.2.2  Non-Homogeneous Elliptic Systems ............... 107
   4.3  Continuous Least-Squares Principles ................... 108
        4.3.1  Homogeneous Elliptic Systems ................... 108
        4.3.2  Non-Homogeneous Elliptic Systems ............... 110
   4.4  Least-Squares Finite Element Methods for Homogeneous
        Elliptic Systems ...................................... 112
   4.5  Least-Squares Finite Element Methods for Non-
        Homogeneous Elliptic Systems .......................... 114
        4.5.1  Quasi-Norm-Equivalent Discrete Least-Squares
               Principles ..................................... 114
        4.5.2  Norm-Equivalent Discrete Least-Squares
               Principles ..................................... 124
   4.6  Concluding Remarks .................................... 129

          Part III Least-Squares Finite Element Methods for
                          Elliptic Problems

5  Scalar Elliptic Equations .................................. 133
   5.1  Applications of Scalar Poisson Equations .............. 135
   5.2  Least-Squares Finite Element Methods for the Second-
        Order Poisson Equation ................................ 137
        5.2.1  Continuous Least-Squares Principles ............ 138
        5.2.2  Discrete Least-Squares Principles .............. 139
   5.3  First-Order System Reformulations ..................... 140
        5.3.1  The Div-Grad System ............................ 141
        5.3.2  The Extended Div-Grad System ................... 145
        5.3.3  Application Examples ........................... 146
   5.4  Energy Balances ....................................... 147
        5.4.1  Energy Balances in the Agmon-Douglis-
               Nirenberg Setting .............................. 148
        5.4.2  Energy Balances in the Vector-Operator
               Setting ........................................ 152
   5.5  Continuous Least-Squares Principles ................... 159
   5.6  Discrete Least-Squares Principles ..................... 163
        5.6.1  The Div-Grad System ............................ 163
        5.6.2  The Extended Div-Grad System ................... 169
   5.7  Error Analyses ........................................ 171
        5.7.1  Error Estimates in Solution Space Norms ........ 171
        5.7.2  L2(Ω) Error Estimates .......................... 175
   5.8  Connections Between Compatible Least-Squares and
        Standard Finite Element Methods ....................... 176
        5.8.1  The Compatible Least-Squares Finite Element
               Method with a Reaction Term .................... 177
        5.8.2  The Compatible Least-Squares Finite Element
               Method Without a Reaction Term ................. 181
   5.9  Practicality Issues ................................... 182
        5.9.1  Practical Rewards of Compatibility ............. 184
        5.9.2  Compatible Least-Squares Finite Element
               Methods on Non-Affine Grids .................... 190
        5.9.3  Advantages and Disadvantages of Extended
               Systems ........................................ 192
   5.10 A Summary of Conclusions and Recommendations .......... 194

6  Vector Elliptic Equations .................................. 197
   6.1  Applications of Vector Elliptic Equations ............. 200
   6.2  Reformulation of Vector Elliptic Problems ............. 201
        6.2.1  Div-Curl Systems ............................... 202
        6.2.2  Curl-Curl Systems .............................. 203
   6.3  Least-Squares Finite Element Methods for Div-Curl
        Systems ............................................... 206
        6.3.1  Energy Balances ................................ 206
        6.3.2  Continuous Least-Squares Principles ............ 209
        6.3.3  Discrete Least-Squares Principles .............. 211
        6.3.4  Analysis of Conforming Least-Squares Finite
               Element Methods ................................ 214
        6.3.5  Analysis of Non-Conforming Least-Squares
               Finite Element Methods ......................... 216
   6.4  Least-Squares Finite Element Methods for Curl-Curl
        Systems ............................................... 221
        6.4.1  Energy Balances ................................ 221
        6.4.2  Continuous Least-Squares Principles ............ 224
        6.4.3  Discrete Least-Squares Principles .............. 225
        6.4.4  Error Analysis ................................. 230
   6.5  Practicality Issues ................................... 231
        6.5.1  Solution of Algebraic Equations ................ 232
        6.5.2  Implementation of Non-Conforming Methods ....... 234
   6.6  A Summary of Conclusions .............................. 236

7  The Stokes Equations ....................................... 237
   7.1  First-Order System Formulations of the Stokes
        Equations ............................................. 238
        7.1.1  The Velocity-Vorticity-Pressure System ......... 239
        7.1.2  The Velocity-Stress-Pressure System ............ 242
        7.1.3  The Velocity Gradient-Velocity-Pressure
               System ......................................... 243
   7.2  Energy Balances in the Agmon-Douglis-Nirenberg
        Setting ............................................... 246
        7.2.1  The Velocity-Vorticity-Pressure System ......... 247
        7.2.2  The Velocity-Stress-Pressure System ............ 250
        7.2.3  The Velocity Gradient-Velocity-Pressure
               System ......................................... 251
   7.3  Continuous Least-Squares Principles in the Agmon-
        Douglis-Nirenberg Setting ............................. 253
        7.3.1  The Velocity-Vorticity-Pressure System ......... 253
        7.3.2  The Velocity-Stress-Pressure System ............ 256
        7.3.3  The Velocity Gradient-Velocity-Pressure
               System ......................................... 256
   7.4  Discrete Least-Squares Principles in the Agmon-
        Douglis-Nirenberg Setting ............................. 257
        7.4.1  The Velocity-Vorticity-Pressure System ......... 258
        7.4.2  The Velocity-Stress-Pressure System ............ 260
        7.4.3  The Velocity Gradient-Velocity-Pressure
               System ......................................... 260
   7.5  Error Estimates in the Agmon-Douglis-Nirenberg
        Setting ............................................... 261
        7.5.1  The Velocity-Vorticity-Pressure System ......... 261
        7.5.2  The Velocity-Stress-Pressure System ............ 263
        7.5.3  The Velocity Gradient-Velocity-Pressure
               System ......................................... 264
   7.6  Practicality Issues in the Agmon-Douglis-Nirenberg
        Setting ............................................... 264
        7.6.1  Solution of the Discrete Equations ............. 265
        7.6.2  Issues Related to Non-Homogeneous Elliptic
               Systems ........................................ 266
        7.6.3  Mass Conservation .............................. 271
        7.6.4  The Zero Mean Pressure Constraint .............. 274
   7.7  Least-Squares Finite Element Methods in the Vector-
        Operator Setting ...................................... 277
        7.7.1  Energy Balances ................................ 277
        7.7.2  Continuous Least-Squares Principles ............ 281
        7.7.3  Discrete Least-Squares Principles .............. 281
        7.7.4  Stability of Discrete Least-Squares
               Principles ..................................... 284
        7.7.5  Conservation of Mass and Strong
               Compatibility .................................. 287
        7.7.6  Error Estimates ................................ 293
        7.7.7  Connection Between Discrete Least-Squares
               Principles and Mixed-Galerkin Methods .......... 302
        7.7.8  Practicality Issues in the Vector Operator
               Setting ........................................ 304
   7.8  A Summary of Conclusions and Recommendations .......... 306

Part IV Least-Squares Finite Element Methods for Other Settings

8  The Navier-Stokes Equations ................................ 311
   8.1  First-Order System Formulations of the Navier-Stokes
        Equations ............................................. 313
   8.2  Least-Squares Principles for the Navier-Stokes
        Equations ............................................. 314
        8.2.1  Continuous Least-Squares Principles ............ 315
        8.2.2  Discrete Least-Squares Principles .............. 316
   8.3  Analysis of Least-Squares Finite Element Methods ...... 317
        8.3.1  Quotation of Background Results ................ 318
        8.3.2  Compliant Discrete Least-Squares Principles
               for the Velocity-Vorticity-Pressure System ..... 321
        8.3.3  Norm-Equivalent Discrete Least-Squares
               Principles for the Velocity-Vorticity-
               Pressure System ................................ 329
        8.3.4  Compliant Discrete Least-Squares Principles
               for the Velocity Gradient-Velocity-Pressure
               System ......................................... 340
        8.3.5  A Norm-Equivalent Discrete Least-Squares
               Principle for the Velocity Gradient-Velocity-
               Pressure System ................................ 344
   8.4  Practicality Issues ................................... 346
        8.4.1  Solution of the Nonlinear Equations ............ 348
        8.4.2  Implementation of Norm-Equivalent Methods ...... 351
        8.4.3  The Utility of Discrete Negative Norm Least-
               Squares Finite Element Methods ................. 354
        8.4.4  Advantages and Disadvantages of Extended
               Systems ........................................ 359
   8.5  A Summary of Conclusions and Recommendations .......... 364

9  Parabolic Partial Differential Equations ................... 367
   9.1  The Generalized Heat Equation ......................... 368
        9.1.1  Backward-Euler Least-Squares Finite Element
               Methods ........................................ 369
        9.1.2  Second-Order Time Accurate Least-Squares
               Finite Element Methods ......................... 382
        9.1.3  Comparison of Finite-Difference Least-Squares
               Finite Element Methods ......................... 389
        9.1.4  Space-Time Least-Squares Principles ............ 391
        9.1.5  Practical Issues ............................... 395
   9.2  The Time-Dependent Stokes Equations ................... 396

10 Hyperbolic Partial Differential Equations .................. 403
   10.1 Model Conservation Law Problems ....................... 404
   10.2 Energy Balances ....................................... 406
        10.2.1 Energy Balances in Hilbert Spaces .............. 407
        10.2.2 Energy Balances in Banach Spaces ............... 409
   10.3 Continuous Least-Squares Principles ................... 410
        10.3.1 Extension to Time-Dependent Conservation
               Laws ........................................... 412
   10.4 Least-Squares Finite Element Methods in a Hilbert
        Space Setting ......................................... 413
        10.4.1 Conforming Methods ............................. 413
        10.4.2 Non-Conforming Methods ......................... 414
   10.5 Residual Minimization Methods in a Banach Space
        Setting ............................................... 416
        10.5.1 An L1(Ω) Minimization Method ................... 416
        10.5.2 Regularized L1(Ω) Minimization Method .......... 418
   10.6 Least-Squares Finite Element Methods Based on
        Adaptively Weighted L2(Ω) Norms ....................... 419
        10.6.1 An Iteratively Re-Weighted Least-Squares
               Finite Element Method .......................... 419
        10.6.2 A Feedback Least-Squares Finite Element
               Method ......................................... 420
        10.7 Practicality Issues .............................. 422
        10.7.1 Approximation of Smooth Solutions .............. 422
        10.7.2 Approximation of Discontinuous Solutions ....... 423
        10.8 A Summary of Conclusions and Recommendations ..... 427

11 Control and Optimization Problems .......................... 429
   11.1 Quadratic Optimization and Control Problems in
        Hilbert Spaces with Linear Constraints ................ 431
        11.1.1 Existence of Optimal States and Controls ....... 432
        11.1.2 Least-Squares Formulation of the Constraint
               Equation ....................................... 435
   11.2 Solution via Lagrange Multipliers of the Optimal
        Control Problem ....................................... 438
        11.2.1 Galerkin Finite Element Methods for the
               Optimality System .............................. 439
        11.2.2 Least-Squares Finite Element Methods for the
               Optimality System .............................. 442
   11.3 Methods Based on Direct Penalization by the Least-
        Squares Functional .................................... 447
        11.3.1 Discretization of the Perturbed Optimality
               System ......................................... 450
        11.3.2 Discretization of the Eliminated System ........ 453
   11.4 Methods Based on Constraining by the Least-Squares
        Functional ............................................ 455
        11.4.1 Discretization of the Optimality System ........ 457
        11.4.2 Discretize-Then-Eliminate Approach for the
               Perturbed Optimality System .................... 457
        11.4.3 Eliminate-Then-Discretize Approach for the
               Perturbed Optimality System .................... 459
   11.5 Relative Merits of the Different Approaches ........... 460
   11.6 Example: Optimization Problems for the Stokes
        Equations ............................................. 461
   11.5 The Optimization Problems and Galerkin Finite
        Element Methods ....................................... 463
        11.6.2 Least-Squares Finite Element Methods for the
               Constraint Equations ........................... 467
        11.6.3 Least-Squares Finite Element Methods for
               the Optimality Systems ......................... 468
        11.6.4 Constraining by the Least-Squares Functional
               for the Constraint Equations ................... 471

12 Variations on Least-Squares Finite Element Methods ......... 475
   12.1 Weak Enforcement of Boundary Conditions ............... 475
   12.2 LL* Finite Element Methods ............................ 480
   12.3 Mimetic Reformulation of Least-Squares Finite
        Element Methods ....................................... 483
   12.4 Collocation Least-Squares Finite Element Methods ...... 488
   12.5 Restricted Least-Squares Finite Element Methods ....... 490
   12.6 Optimization-Based Least-Squares Finite Element
        Methods ............................................... 492
   12.7 Least-Squares Finite Element Methods for Advection-
        Diffusion-Reaction Problems ........................... 494
   12.8 Least-Squares Finite Element Methods for Higher-
        Order Problems ........................................ 503
   12.9 Least-Squares Finite Element Methods for Div-Grad-
        Curl Systems .......................................... 505
   12.10 Domain Decomposition Least-Squares Finite Element
        Methods ............................................... 507
   12.11 Least-Squares Finite Element Methods for Multi-
        Physics Problems ...................................... 513
   12.12 Least-Squares Finite Element Methods for Problems
        with Singular Solutions ............................... 517
   12.13 Treffetz Least-Squares Finite Element Methods ........ 521
   12.14 A Posteriori Error Estimation and Adaptive Mesh
        Refinement ............................................ 523
   12.15 Least-Squares Wavelet Methods ........................ 526
   12.16 Meshless Least-Squares Methods ....................... 528

                   Part V Supplementary Material

A  Analysis Tools ............................................. 533
   A.l  General Notations and Symbols ......................... 533
   A.2  Function Spaces ....................................... 535
        A.2.1  The Sobolev Spaces HS(Ω) ....................... 536
        A.2.2  Spaces Related to the Gradient, Curl, and
               Divergence Operators ........................... 540
   A.3  Properties of Function Spaces ......................... 547
        A.3.1  Embeddingsof C(Ω) ∩ D(Ω) ....................... 547
        A.3.2  Poincare-Friedrichs Inequalities ............... 548
        A.3.3  Hodge Decompositions ........................... 550
        A.3.4  Trace Theorems ................................. 551

В  Compatible Finite Element Spaces ........................... 553
   B.l  Formal Definition and Properties of Finite Element
        Spaces ................................................ 554
   B.2  Finite Element Approximation of the De Rham Complex ... 557
        B.2.1  Examples of Compatible Finite Element Spaces ... 559
        B.2.2  Approximation of C(Ω) ∩ D(Ω) ................... 567
        B.2.3  Exact Sequences of Finite Element Spaces ....... 569
   B.3  Properties of Compatible Finite Element Spaces ........ 571
        B.3.1  Discrete Operators ............................. 571
        B.3.2  Discrete Poincaré-Friedrichs Inequalities ...... 576
        В.3.3  Discrete Hodge Decompositions .................. 577
        B.3.4  Inverse Inequalities ........................... 580
   B.4  Norm Approximations ................................... 581
        B.4.1  Quasi-Norm-Equivalent Approximations ........... 581
        B.4.2  Norm-Equivalent Approximations ................. 582

С  Linear Operator Equations in Hiibert Spaces ................ 585
   C.1  Auxiliary Operator Equations .......................... 586
   C.2  Energy Balances ....................................... 589

D  The Agmon-Douglis-Nirenberg Theory and Verifying
   its Assumptions ............................................ 593
   D.1  The Agmon-Douglis-Nirenberg Theory .................... 593
   D.2  Verifying the Assumptions of the Agmon-Douglis-
        Nirenberg Theory ...................................... 597
        D.2.1  Div-Grad Systems ............................... 598
        D.2.2  Div-Grad-Curl Systems .......................... 602
        D.2.3  Div-Curl Systems ............................... 606
        D.2.4  The Velocity-Vorticity-Pressure Formulation
               of the Stokes System ........................... 608
        D.2.5  The Velocity-Stress-Pressure Formulation of
               the Stokes System .............................. 622

References .................................................... 625
Acronyms ...................................................... 641
Glossary ...................................................... 643
Index ......................................................... 647


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:28 2019. Размер: 28,352 bytes.
Посещение N 2240 c 12.10.2010