Sapiro G. Geometric partial differential equations and image analysis (Cambridge; New York, 2001). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSapiro G. Geometric partial differential equations and image analysis. - Cambridge; New York: Cambridge University Press, 2001. - xxv, 385 p.: ill. - Bibliogr.: p.359-380. - Ind.: p.381-385. - ISBN 978-0-521-79075-8; ISBN 978-0-521-68507-8
 

Оглавление / Contents
 
List of figures ................................................ xi
Preface ........................................................ xv
Acknowledgments .............................................. xvii
Introduction .................................................. xxi

1  Basic Mathematical Background ................................ 1
   1.1  Planar Differential Geometry ............................ 2
   1.2  Affine Differential Geometry ............................ 7
   1.3  Cartan Moving Frames ................................... 12
   1.4  Space Curves ........................................... 15
   1.5  Three-Dimensional Differential Geometry ................ 17
   1.6  Discrete Differential Geometry ......................... 20
   1.7  Differential Invariants and Lie Group Theory ........... 22
   1.8  Basic Concepts of Partial Differential Equations ....... 45
   1.9  Calculus of Variations and Gradient Descent Flows ...... 57
   1.10 Numerical Analysis ..................................... 61
   Exercises ................................................... 69
2  Geometric Curve and Surface Evolution ....................... 71
   2.1  Basic Concepts ......................................... 71
   2.2  Level Sets and Implicit Representations ................ 74
   2.3  Variational Level Sets ................................. 91
   2.4  Continuous Mathematical Morphology ..................... 92
   2.5  Euclidean and Affine Curve Evolution and Shape 
        Analysis ............................................... 99
   2.6  Euclidean and Affine Surface Evolution ................ 129
   2.7  Area- and Volume-Preserving 3D Flows .................. 131
   2.8  Classification of Invariant Geometric Flows ........... 134
   Exercises .................................................. 142
3  Geodesic Curves and Minimal Surfaces ....................... 143
   3.1  Basic Two-Dimensional Derivation ...................... 143
   3.2  Three-Dimensional Derivation .......................... 165
   3.3  Geodesies in Vector-Valued Images ..................... 182
   3.4  Finding the Minimal Geodesic .......................... 191
   3.5  Affine Invariant Active Contours ...................... 197
   3.6  Additional Extensions and Modifications ............... 205
   3.7  Tracking and Morphing Active Contours ................. 207
   3.8 Stereo ................................................. 215
   Appendix A ................................................. 217
   Appendix В ................................................. 218
   Exercises .................................................. 220
4  Geometric Diffusion of Scalar Images ....................... 221
   4.1  Gaussian Filtering and Linear Scale Spaces ............ 221
   4.2  Edge-Stopping Diffusion ............................... 223
   4.3  Directional Diffusion ................................. 241
   4.4  Introducing Prior Knowledge ........................... 248
   4.5  Some Order in the PDE Jungle .......................... 260
   Exercises .................................................. 265
5  Geometric Diffusion of Vector-Valued Images ................ 267
   5.1  Directional Diffusion of Multivalued Images ........... 267
   5.2  Vectorial Median Filter ............................... 269
   5.3  Color Self-Snakes ..................................... 281
   Exercises .................................................. 283
6  Diffusion on Nonflat Manifolds ............................. 284
   6.1  The General Problem ................................... 287
   6.2  Isotropic Diffusion ................................... 290
   6.3  Anisotropic Diffusion ................................. 292
   6.4  Examples .............................................. 293
   6.5  Vector Probability Diffusion .......................... 298
   Appendix ................................................... 304
   Exercises .................................................. 305
7  Contrast Enhancement ....................................... 307
   7.1  Global PDE-Based Approach ............................. 310
   7.2  Shape-Preserving Contrast Enhancement ................. 325
   Exercises .................................................. 337
8  Additional Theories and Applications ....................... 338
   8.1. Interpolation ......................................... 338
   8.2  Image Repair: Inpainting .............................. 343
   8.3  Shape from Shading .................................... 355
   8.4  Blind Deconvolution ................................... 357
   Exercises .................................................. 358

Bibliography .................................................. 359
Index ......................................................... 381


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:28 2019. Размер: 8,646 bytes.
Посещение N 1600 c 05.10.2010