Nanotechnology for the energy challenge (Weinheim, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanotechnology for the energy challenge / ed. by J.Garcia-Martinez. - Weinheim: Wiley-VCH, 2010. - xx, 477 p.: ill. - Ref.: p.455-458. - Ind.: p.459-477. - ISBN 978-3-527-32401-9
 

Оглавление / Contents
 
Introduction ................................................... XV
List of Contributors ......................................... XVII

Part One  Sustainable Energy Production ......................... 1

1  Nanotechnology for Energy Production ......................... 3
   Elena Serrano, Kunhao Li, Guillermo Rus, and Javier 
   Garcia-Martinez
   1.1  Energy Challenge in the 21st Century and
        Nanotechnology .......................................... 3
   1.2  Nanotechnology in Energy Production ..................... 6
        1.2.1  Photovoltaics .................................... 6
        1.2.2  Hydrogen Production ............................. 14
        1.2.3  Fuel Cells ...................................... 20
        1.2.4  Thermoelectricity ............................... 26
   1.3  Summary ................................................ 28
   Acknowledgment .............................................. 28
   References .................................................. 29

2  Nanotechnology in Dye-Sensitized Photoelectrochemical
   Devices ..................................................... 33
   Agustin McEvoy and Michaёl Grätzel
   2.1  Introduction ........................................... 33
   2.2  Semiconductors and Optical Absorption .................. 34
   2.3  Dye Molecular Engineering .............................. 38
   2.4  The Stable Self-Assembling Dye Monomolecular Layer ..... 40
   2.5  The Nanostructured Semiconductor ....................... 41
   2.6  Conclusions ............................................ 43
   References .................................................. 44

3  Thermal-Electrical Energy Conversion from the
   Nanotechnology Perspective .................................. 47
   Jian He and Terry M. Tritt
   3.1  Introduction ........................................... 47
   3.2  Established Bulk Thermoelectric Materials .............. 48
   3.3  Selection Criteria for Bulk Thermoelectric Materials ... 51
   3.4  Survey of Size Effects ................................. 53
        3.4.1  Classic Size Effects ............................ 54
        3.4.2  Quantum Size Effects ............................ 55
        3.4.3  Thermoelectricity of Nanostructured Materials ... 56
   3.5  Thermoelectric Properties on the Nanoscale: Modeling
        and Metrology .......................................... 58
   3.6  Experimental Results and Discussions ................... 60
        3.6.1  Bi Nanowire/Nanorod ............................. 60
        3.6.2  Si Nanowire ..................................... 62
        3.6.3  Engineered "Exotic" Nanostructures .............. 64
        3.6.4  Thermionics ..................................... 66
        3.6.5  Thermoelectric Nanocomposites: a New Paradigm ... 68
   3.7  Summary and Perspectives ............................... 73
   Acknowledgments ............................................. 74
   References .................................................. 74

4  Nanomaterials for Fuel Cell Technologies .................... 79
   Antonino Salvatore Aricò, Vincenzo Baglio, and Vincenzo
   Antonucci
   4.1  Introduction ........................................... 79
   4.2  Low-Temperature Fuel Cells ............................. 80
        4.2.1  Cathode Reaction ................................ 80
        4.2.2  Anodic Reaction ................................. 83
        4.2.3  Practical Fuel Cell Catalysts ................... 85
        4.2.4  Non-Precious Catalysts .......................... 90
        4.2.5  Electrolytes .................................... 90
        4.2.6  High-Temperature Polymer Electrolyte
               Membranes ....................................... 91
        4.2.7  Membrane-Electrode Assembly (MEA) ............... 96
   4.3  High-Temperature Fuel Cells ............................ 98
        4.3.1  High-Temperature Ceramic Electrocatalysts ...... 101
        4.3.2  Direct Utilization of Dry Hydrocarbons in
               SOFCs .......................................... 103
   4.4  Conclusions ........................................... 106
   References ................................................. 106

5  The Contribution of Nanotechnology to Hydrogen
   Production ................................................. 111
   Sambandam Anandan, Jagannathan Madhavan, and Muthupandian
   Ashokkumar
   5.1  Introduction .......................................... 111
   5.2  Hydrogen Production by Semiconductor Nanomaterials .... 113
        5.2.1  General Approach ............................... 113
        5.2.2  Need for Nanomaterials ......................... 114
        5.2.3  Nanomaterials-Based Photoelectrochemical
               Cells for H2 Production
        5.2.4  Semiconductors with Specific Morphology:
               Nanotubes and Nanodisks ........................ 117
        5.2.5  Sensitization .................................. 123
   5.3  Summary ............................................... 131
   Acknowledgments ............................................ 132
   References ................................................. 132

Part Two  Efficient Energy Storage ............................ 137

6  Nanostructured Materials for Hydrogen Storage .............. 139
   Saghar Sepehri and Guozhong Cao
   6.1  Introduction .......................................... 139
   6.2  Hydrogen Storage by Physisorption ..................... 140
        6.2.1  Nanostructured Carbon .......................... 141
        6.2.2  Zeolites ....................................... 142
        6.2.3  Metal-Organic Frameworks ....................... 143
        6.2.4  Clathrates ..................................... 143
        6.2.5  Polymers with Intrinsic Microporosity .......... 144
   6.3  Hydrogen Storage by Chemisorption ..................... 144
        6.3.1  Metal and Complex Hydrides ..................... 144
        6.3.2  Chemical Hydrides .............................. 147
        6.3.3  Nanocomposites ................................. 148
   6.4  Summary ............................................... 151
   References ................................................. 151

7  Electrochemical Energy Storage: the Benefits of
   Nanomaterials .............................................. 155
   Patrice Simon and Jean-Marie Tarascon
   7.1  Introduction .......................................... 155
   7.2  Nanomaterials for Energy Storage ...................... 158
        7.2.1  From Rejected Insertion Materials to
               Attractive Electrode Materials ................. 158
        7.2.2  The Use of Once Rejected Si-Based Electrodes ... 160
        7.2.3  Conversion Reactions ........................... 161
   7.3  Nanostructured Electrodes and Interfaces for
        the Electrochemical Storage of Energy ................. 163
        7.3.1  Nanostructuring of Current Collectors/Active
               Film Interface ................................. 163
               7.3.1.1  Self-Supported Electrodes ............. 163
               7.3.1.2  Nano-Architectured Current
                        Collectors ............................ 163
        7.3.2  Nano Structuring of Active Material/
               Electrolyte Interfaces ......................... 168
               7.3.2.1  Application to Li-Ion Batteries:
                        Mesoporous Chromium Oxides ............ 168
               7.3.2.2  Application to Electrochemical
                        Double-Layer Capacitors ............... 169
   7.4  Conclusion ............................................ 174
   Acknowledgments ............................................ 175
   References ................................................. 175

8  Carbon-Based Nanomaterials for Electrochemical
   Energy Storage ............................................. 177
   Elzbieta Frackowiak and François Béguin
   8.1  Introduction .......................................... 177
   8.2  Nanotexture and Surface Functionality of sp2
        Carbons ............................................... 177
   8.3  Supercapacitors ....................................... 180
        8.3.1  Principle of a Supercapacitor .................. 180
        8.3.2  Carbons for Electric Double Layer Capacitors ... 182
        8.3.3  Carbon-Based Materials for Pseudo-Capacitors ... 185
               8.3.3.1  Pseudocapacitance Effects Related
                        with Hydrogen Electrosorbed in
                        Carbon ................................ 185
               8.3.3.2  Pseudocapacitive Oxides and
                        Conducting Polymers ................... 188
               8.3.3.3  Pseudo-Capacitive Effects Originated
                        from Heteroatoms in the Carbon
                        Network ............................... 190
   8.4  Lithium-Ion Batteries ................................. 194
        8.4.1  Anodes Based on Nanostructured Carbons ......... 195
        8.4.2  Anodes Based on Si/C Composites ................ 196
        8.4.3  Origins of Irreversible Capacity of Carbon
               Anodes ......................................... 199
   8.5  Conclusions ........................................... 201

9  Nanomaterials for Superconductors from the Energy
   Perspective ................................................ 205
   Claudia Cantoni and Amit Goyal
   9.1  Overcoming Limitations to Superconductors'
        Performance ........................................... 205
   9.2  Flux Pinning by Nanoscale Defects ..................... 207
   9.3  The Grain Boundary Problem ............................ 208
   9.4  Anisotropic Current Properties ........................ 210
   9.5  Enhancing Naturally Occurring Nanoscale Defects ....... 212
   9.6  Artificial Introduction of Flux Pinning
        Nanostructures ........................................ 215
   9.7  Self-Assembled Nanostructures ......................... 216
   9.8  Control of Epitaxy-Enabling Atomic Sulfur
        Superstructure ........................................ 221
   Acknowledgments ............................................ 223
   References ................................................. 224

Part Three  Energy Sustainability ............................. 229

10 Green Nanofabrication: Unconventional Approaches for the
   Conservative Use of Energy ................................. 231
   Darren J. Lipomi, Emily A. Weiss, and George
   M. Whitesides
   10.1 Introduction .......................................... 231
        10.1.1  Motivation .................................... 232
        10.1.2  Energetic Costs of Nanofabrication ............ 233
        10.1.3  Use of Tools .................................. 234
        10.1.4  Nontraditional Materials ...................... 236
        10.1.5  Scope ......................................... 236
   10.2 Green Approaches to Nanofabrication ................... 238
        10.2.1 Molding and Embossing .......................... 238
               10.2.1.1 Hard Pattern Transfer Elements ........ 238
               10.2.1.2 Soft Pattern Transfer Elements ........ 240
               10.2.1.3 Outlook ............................... 243
        10.2.2  Printing ...................................... 244
               10.2.2.1 Microcontact Printing ................. 244
               10.2.2.2 Dip-Pen Nanolithography ............... 245
               10.2.2.3 Outlook ............................... 246
        10.2.3 Edge Lithography by Nanoskiving ................ 246
               10.2.3.1 The Ultramicrotome .................... 248
               10.2.3.2 Nanowires with Controlled
                        Dimensions ............................ 248
               10.2.3.3 Open- and Closed-Loop Structures ...... 248
               10.2.3.4 Linear Arrays of Single-Crystalline
                        Nanowires ............................. 249
               10.2.3.5 Conjugated Polymer Nanowires .......... 252
               10.2.3.6 Nanostructured Polymer
                        Heterojunctions ....................... 253
               10.2.3.7 Outlook ............................... 258
        10.2.4 Shadow Evaporation ............................. 259
               10.2.4.1 Hollow Inorganic Tubes ................ 259
               10.2.4.2 Outlook ............................... 261
        10.2.5 Electrospinning ................................ 263
               10.2.5.1 Scanned Electrospinning ............... 264
               10.2.5.2 Uniaxial Electrospinning .............. 265
               10.2.5.3 Core/Shell and Hollow Nanofibers ...... 265
               10.2.5.4 Outlook ............................... 267
        10.2.6 Self-Assembly .................................. 267
               10.2.6.1 Hierarchical Assembly of
                        Nanocrystals .......................... 268
               10.2.6.2 Block Copolymers ...................... 269
               10.2.6.3 Outlook ............................... 271
   10.3 Future Directions: Toward "Zero-Cost" Fabrication ..... 271
        10.3.1 Scotch-Tape Method for the Preparation of
               Graphene Films ................................. 271
        10.3.2 Patterned Paper as a Low-Cost Substrate ........ 272
        10.3.3 Shrinky-Dinks for Soft Lithography ............. 272
   10.4 Conclusions ........................................... 274
   Acknowledgments ............................................ 275
   References ................................................. 275

11 Nanocatalysis for Fuel Production .......................... 281
   Burtron H. Davis
   11.1 Introduction .......................................... 281
   11.2 Petroleum Refining .................................... 282
   11.3 Naphtha Reforming ..................................... 282
   11.4 Hydrotreating ......................................... 289
   11.5 Cracking .............................................. 293
   11.6 Hydrocracking ......................................... 295
   11.7 Conversion of Syngas .................................. 296
   11.8 Water-Gas Shift ....................................... 296
   11.9 Methanol Synthesis .................................... 298
   11.10 Fischer-Tropsch Synthesis (FTS) ...................... 302
   11.11 Methanation .......................................... 307
   11.12 Nanocatalysis for Bioenergy .......................... 308
   11.13 The Future ........................................... 312
   References ................................................. 314

12 Surface-Functionalized Nanoporous Catalysts Towards
   Biofuel Applications ....................................... 319
   Hung-Ting Chen, Brian G. Trewyn, and Victor S.-Y. Lin
   12.1 Introduction .......................................... 319
        12.1.1 "Single-Site" Heterogeneous Catalysis .......... 320
        12.1.2 Techniques for the Characterization of
               Heterogeneous Catalysts ........................ 321
   12.2 Immobilization Strategies of Single-Site
        Heterogeneous Catalysts ............................... 322
        12.2.1 Supported Materials ............................ 322
        12.2.2 Conventional Methods of Functionalization on
               Silica Surface ................................. 324
               12.2.2.1 Non-Covalent Binding of Homogeneous
                        Catalysts ............................. 324
               12.2.2.2 Immobilization of Catalysts on the
                        Surface through Covalent Bonds ........ 327
               12.2.2.3 Post-Grafting Silylation Method ....... 328
               12.2.2.4 Co-Condensation Method ................ 330
        12.2.3 Alternative Synthesis of Immobilized Complex
               Catalysts on the Solid Support ................. 333
   12.3 Design of more Efficient Heterogeneous Catalysts
        with Enhanced Reactivity and Selectivity .............. 335
        12.3.1 Surface Interaction of Silica and Immobilized
               Homogeneous Catalysts .......................... 335
        12.3.2 Reactivity Enhancement of Heterogeneous
               Catalytic System Induced by Site Isolation ..... 337
        12.3.3 Introduction of Functionalities and Control
               of Silica Support Morphology ................... 338
        12.3.4 Selective Surface Functionalization of Solid
               Support for Utilization of Nanospace Inside
               the Porous Structure ........................... 342
        12.3.5 Cooperative Catalysis by Multi-Functionalized
               Heterogeneous Catalyst System .................. 346
        12.3.6 Tuning the Selectivity of Multi-
               Functionalized Hetergeneous Catalysts by
               Gatekeeping Effect ............................. 348
        12.3.7 Synergistic Catalysis by General Acid and
               Base Bifunctionalized MSN Catalysts ............ 351
   12.4 Other Heterogeneous Catalyst System on Non-Silica
        Support ............................................... 354
   12.5 Conclusion ............................................ 354
   References ................................................. 356

13 Nanotechnology for Carbon Dioxide Capture .................. 359
   Richard R. Willis, Annabelle Benin, Randall Q Snurr, and
   Öznür Yazaydin
   13.1 Introduction .......................................... 359
   13.2 CO2 Capture Processes ................................. 364
   13.3 Nanotechnology for CO2 Capture ........................ 366
   13.4 Porous Coordination Polymers for CO2 Capture .......... 371
   References ................................................. 395
14 Nanostructured Organic Light-Emitting Devices .............. 403
   Juo-Hao Li, Jinsong Huang, and Yang Yang
   14.1 Introduction .......................................... 403
   14.2 Quantum Confinement and Charge Balance for OLEDs and
        PLEDs ................................................. 405
        14.2.1 Multilayer Structured OLEDs and PLEDs .......... 405
        14.2.2 Charge Balance in a Polymer Blended System ..... 406
        14.2.3 Interfacial Layer and Charge Injection ......... 411
               14.2.3.1 I-V Characteristics ................... 412
               14.2.3.2 Built-in Potential From Photovoltaic
                        Measurement ........................... 413
               14.2.3.3 XPS/UPS Study of the Interface ........ 415
               14.2.3.4 Comparison with Cs/Al Cathode ......... 420
   14.3 Phosphorescent Materials for OLEDs and PLEDs .......... 421
        14.3.1 Fluorescence and Phosphorescent Materials ...... 421
        14.3.2 Solution-Processed Phosphorescent Materials .... 422
   14.4 Multi-Photon Emission and Tandem Structure for OLEDs
        and PLEDs ............................................. 428
   14.5 The Enhancement of Light Out-Coupling ................. 429
   14.6 Outlook for the Future of Nanostructured OLEDs and
        PLEDs ................................................. 431
   14.7 Conclusion ............................................ 432
   References ................................................. 432
15 Electrochromic Materials and Devices for Energy Efficient
   Buildings .................................................. 435
   Claes-Göran Granqvist
   15.1 Introduction .......................................... 435
   15.2 Electrochromic Materials .............................. 437
        15.2.1 Functional Principles and Basic Materials ...... 437
        15.2.2 The Role of Nanostructure ...................... 439
        15.2.3 The Cause of Optical Absorption ................ 443
   15.3 Electrochromic Devices ................................ 445
        15.3.1 Data on Foil-Based Devices with W Oxide and
               Ni Oxide ....................................... 445
        15.3.2 Au-Based Transparent Conductors ................ 449
        15.3.3 Thermochromic VO2-Based Films for Use with
               Electrochromic Devices ......................... 451
   15.4 Conclusions and Remarks ............................... 452

References .................................................... 455

Index ......................................................... 459


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:26 2019. Размер: 24,680 bytes.
Посещение N 1345 c 05.10.2010