Introduction ................................................... XV
List of Contributors ......................................... XVII
Part One Sustainable Energy Production ......................... 1
1 Nanotechnology for Energy Production ......................... 3
Elena Serrano, Kunhao Li, Guillermo Rus, and Javier
Garcia-Martinez
1.1 Energy Challenge in the 21st Century and
Nanotechnology .......................................... 3
1.2 Nanotechnology in Energy Production ..................... 6
1.2.1 Photovoltaics .................................... 6
1.2.2 Hydrogen Production ............................. 14
1.2.3 Fuel Cells ...................................... 20
1.2.4 Thermoelectricity ............................... 26
1.3 Summary ................................................ 28
Acknowledgment .............................................. 28
References .................................................. 29
2 Nanotechnology in Dye-Sensitized Photoelectrochemical
Devices ..................................................... 33
Agustin McEvoy and Michaёl Grätzel
2.1 Introduction ........................................... 33
2.2 Semiconductors and Optical Absorption .................. 34
2.3 Dye Molecular Engineering .............................. 38
2.4 The Stable Self-Assembling Dye Monomolecular Layer ..... 40
2.5 The Nanostructured Semiconductor ....................... 41
2.6 Conclusions ............................................ 43
References .................................................. 44
3 Thermal-Electrical Energy Conversion from the
Nanotechnology Perspective .................................. 47
Jian He and Terry M. Tritt
3.1 Introduction ........................................... 47
3.2 Established Bulk Thermoelectric Materials .............. 48
3.3 Selection Criteria for Bulk Thermoelectric Materials ... 51
3.4 Survey of Size Effects ................................. 53
3.4.1 Classic Size Effects ............................ 54
3.4.2 Quantum Size Effects ............................ 55
3.4.3 Thermoelectricity of Nanostructured Materials ... 56
3.5 Thermoelectric Properties on the Nanoscale: Modeling
and Metrology .......................................... 58
3.6 Experimental Results and Discussions ................... 60
3.6.1 Bi Nanowire/Nanorod ............................. 60
3.6.2 Si Nanowire ..................................... 62
3.6.3 Engineered "Exotic" Nanostructures .............. 64
3.6.4 Thermionics ..................................... 66
3.6.5 Thermoelectric Nanocomposites: a New Paradigm ... 68
3.7 Summary and Perspectives ............................... 73
Acknowledgments ............................................. 74
References .................................................. 74
4 Nanomaterials for Fuel Cell Technologies .................... 79
Antonino Salvatore Aricò, Vincenzo Baglio, and Vincenzo
Antonucci
4.1 Introduction ........................................... 79
4.2 Low-Temperature Fuel Cells ............................. 80
4.2.1 Cathode Reaction ................................ 80
4.2.2 Anodic Reaction ................................. 83
4.2.3 Practical Fuel Cell Catalysts ................... 85
4.2.4 Non-Precious Catalysts .......................... 90
4.2.5 Electrolytes .................................... 90
4.2.6 High-Temperature Polymer Electrolyte
Membranes ....................................... 91
4.2.7 Membrane-Electrode Assembly (MEA) ............... 96
4.3 High-Temperature Fuel Cells ............................ 98
4.3.1 High-Temperature Ceramic Electrocatalysts ...... 101
4.3.2 Direct Utilization of Dry Hydrocarbons in
SOFCs .......................................... 103
4.4 Conclusions ........................................... 106
References ................................................. 106
5 The Contribution of Nanotechnology to Hydrogen
Production ................................................. 111
Sambandam Anandan, Jagannathan Madhavan, and Muthupandian
Ashokkumar
5.1 Introduction .......................................... 111
5.2 Hydrogen Production by Semiconductor Nanomaterials .... 113
5.2.1 General Approach ............................... 113
5.2.2 Need for Nanomaterials ......................... 114
5.2.3 Nanomaterials-Based Photoelectrochemical
Cells for H2 Production
5.2.4 Semiconductors with Specific Morphology:
Nanotubes and Nanodisks ........................ 117
5.2.5 Sensitization .................................. 123
5.3 Summary ............................................... 131
Acknowledgments ............................................ 132
References ................................................. 132
Part Two Efficient Energy Storage ............................ 137
6 Nanostructured Materials for Hydrogen Storage .............. 139
Saghar Sepehri and Guozhong Cao
6.1 Introduction .......................................... 139
6.2 Hydrogen Storage by Physisorption ..................... 140
6.2.1 Nanostructured Carbon .......................... 141
6.2.2 Zeolites ....................................... 142
6.2.3 Metal-Organic Frameworks ....................... 143
6.2.4 Clathrates ..................................... 143
6.2.5 Polymers with Intrinsic Microporosity .......... 144
6.3 Hydrogen Storage by Chemisorption ..................... 144
6.3.1 Metal and Complex Hydrides ..................... 144
6.3.2 Chemical Hydrides .............................. 147
6.3.3 Nanocomposites ................................. 148
6.4 Summary ............................................... 151
References ................................................. 151
7 Electrochemical Energy Storage: the Benefits of
Nanomaterials .............................................. 155
Patrice Simon and Jean-Marie Tarascon
7.1 Introduction .......................................... 155
7.2 Nanomaterials for Energy Storage ...................... 158
7.2.1 From Rejected Insertion Materials to
Attractive Electrode Materials ................. 158
7.2.2 The Use of Once Rejected Si-Based Electrodes ... 160
7.2.3 Conversion Reactions ........................... 161
7.3 Nanostructured Electrodes and Interfaces for
the Electrochemical Storage of Energy ................. 163
7.3.1 Nanostructuring of Current Collectors/Active
Film Interface ................................. 163
7.3.1.1 Self-Supported Electrodes ............. 163
7.3.1.2 Nano-Architectured Current
Collectors ............................ 163
7.3.2 Nano Structuring of Active Material/
Electrolyte Interfaces ......................... 168
7.3.2.1 Application to Li-Ion Batteries:
Mesoporous Chromium Oxides ............ 168
7.3.2.2 Application to Electrochemical
Double-Layer Capacitors ............... 169
7.4 Conclusion ............................................ 174
Acknowledgments ............................................ 175
References ................................................. 175
8 Carbon-Based Nanomaterials for Electrochemical
Energy Storage ............................................. 177
Elzbieta Frackowiak and François Béguin
8.1 Introduction .......................................... 177
8.2 Nanotexture and Surface Functionality of sp2
Carbons ............................................... 177
8.3 Supercapacitors ....................................... 180
8.3.1 Principle of a Supercapacitor .................. 180
8.3.2 Carbons for Electric Double Layer Capacitors ... 182
8.3.3 Carbon-Based Materials for Pseudo-Capacitors ... 185
8.3.3.1 Pseudocapacitance Effects Related
with Hydrogen Electrosorbed in
Carbon ................................ 185
8.3.3.2 Pseudocapacitive Oxides and
Conducting Polymers ................... 188
8.3.3.3 Pseudo-Capacitive Effects Originated
from Heteroatoms in the Carbon
Network ............................... 190
8.4 Lithium-Ion Batteries ................................. 194
8.4.1 Anodes Based on Nanostructured Carbons ......... 195
8.4.2 Anodes Based on Si/C Composites ................ 196
8.4.3 Origins of Irreversible Capacity of Carbon
Anodes ......................................... 199
8.5 Conclusions ........................................... 201
9 Nanomaterials for Superconductors from the Energy
Perspective ................................................ 205
Claudia Cantoni and Amit Goyal
9.1 Overcoming Limitations to Superconductors'
Performance ........................................... 205
9.2 Flux Pinning by Nanoscale Defects ..................... 207
9.3 The Grain Boundary Problem ............................ 208
9.4 Anisotropic Current Properties ........................ 210
9.5 Enhancing Naturally Occurring Nanoscale Defects ....... 212
9.6 Artificial Introduction of Flux Pinning
Nanostructures ........................................ 215
9.7 Self-Assembled Nanostructures ......................... 216
9.8 Control of Epitaxy-Enabling Atomic Sulfur
Superstructure ........................................ 221
Acknowledgments ............................................ 223
References ................................................. 224
Part Three Energy Sustainability ............................. 229
10 Green Nanofabrication: Unconventional Approaches for the
Conservative Use of Energy ................................. 231
Darren J. Lipomi, Emily A. Weiss, and George
M. Whitesides
10.1 Introduction .......................................... 231
10.1.1 Motivation .................................... 232
10.1.2 Energetic Costs of Nanofabrication ............ 233
10.1.3 Use of Tools .................................. 234
10.1.4 Nontraditional Materials ...................... 236
10.1.5 Scope ......................................... 236
10.2 Green Approaches to Nanofabrication ................... 238
10.2.1 Molding and Embossing .......................... 238
10.2.1.1 Hard Pattern Transfer Elements ........ 238
10.2.1.2 Soft Pattern Transfer Elements ........ 240
10.2.1.3 Outlook ............................... 243
10.2.2 Printing ...................................... 244
10.2.2.1 Microcontact Printing ................. 244
10.2.2.2 Dip-Pen Nanolithography ............... 245
10.2.2.3 Outlook ............................... 246
10.2.3 Edge Lithography by Nanoskiving ................ 246
10.2.3.1 The Ultramicrotome .................... 248
10.2.3.2 Nanowires with Controlled
Dimensions ............................ 248
10.2.3.3 Open- and Closed-Loop Structures ...... 248
10.2.3.4 Linear Arrays of Single-Crystalline
Nanowires ............................. 249
10.2.3.5 Conjugated Polymer Nanowires .......... 252
10.2.3.6 Nanostructured Polymer
Heterojunctions ....................... 253
10.2.3.7 Outlook ............................... 258
10.2.4 Shadow Evaporation ............................. 259
10.2.4.1 Hollow Inorganic Tubes ................ 259
10.2.4.2 Outlook ............................... 261
10.2.5 Electrospinning ................................ 263
10.2.5.1 Scanned Electrospinning ............... 264
10.2.5.2 Uniaxial Electrospinning .............. 265
10.2.5.3 Core/Shell and Hollow Nanofibers ...... 265
10.2.5.4 Outlook ............................... 267
10.2.6 Self-Assembly .................................. 267
10.2.6.1 Hierarchical Assembly of
Nanocrystals .......................... 268
10.2.6.2 Block Copolymers ...................... 269
10.2.6.3 Outlook ............................... 271
10.3 Future Directions: Toward "Zero-Cost" Fabrication ..... 271
10.3.1 Scotch-Tape Method for the Preparation of
Graphene Films ................................. 271
10.3.2 Patterned Paper as a Low-Cost Substrate ........ 272
10.3.3 Shrinky-Dinks for Soft Lithography ............. 272
10.4 Conclusions ........................................... 274
Acknowledgments ............................................ 275
References ................................................. 275
11 Nanocatalysis for Fuel Production .......................... 281
Burtron H. Davis
11.1 Introduction .......................................... 281
11.2 Petroleum Refining .................................... 282
11.3 Naphtha Reforming ..................................... 282
11.4 Hydrotreating ......................................... 289
11.5 Cracking .............................................. 293
11.6 Hydrocracking ......................................... 295
11.7 Conversion of Syngas .................................. 296
11.8 Water-Gas Shift ....................................... 296
11.9 Methanol Synthesis .................................... 298
11.10 Fischer-Tropsch Synthesis (FTS) ...................... 302
11.11 Methanation .......................................... 307
11.12 Nanocatalysis for Bioenergy .......................... 308
11.13 The Future ........................................... 312
References ................................................. 314
12 Surface-Functionalized Nanoporous Catalysts Towards
Biofuel Applications ....................................... 319
Hung-Ting Chen, Brian G. Trewyn, and Victor S.-Y. Lin
12.1 Introduction .......................................... 319
12.1.1 "Single-Site" Heterogeneous Catalysis .......... 320
12.1.2 Techniques for the Characterization of
Heterogeneous Catalysts ........................ 321
12.2 Immobilization Strategies of Single-Site
Heterogeneous Catalysts ............................... 322
12.2.1 Supported Materials ............................ 322
12.2.2 Conventional Methods of Functionalization on
Silica Surface ................................. 324
12.2.2.1 Non-Covalent Binding of Homogeneous
Catalysts ............................. 324
12.2.2.2 Immobilization of Catalysts on the
Surface through Covalent Bonds ........ 327
12.2.2.3 Post-Grafting Silylation Method ....... 328
12.2.2.4 Co-Condensation Method ................ 330
12.2.3 Alternative Synthesis of Immobilized Complex
Catalysts on the Solid Support ................. 333
12.3 Design of more Efficient Heterogeneous Catalysts
with Enhanced Reactivity and Selectivity .............. 335
12.3.1 Surface Interaction of Silica and Immobilized
Homogeneous Catalysts .......................... 335
12.3.2 Reactivity Enhancement of Heterogeneous
Catalytic System Induced by Site Isolation ..... 337
12.3.3 Introduction of Functionalities and Control
of Silica Support Morphology ................... 338
12.3.4 Selective Surface Functionalization of Solid
Support for Utilization of Nanospace Inside
the Porous Structure ........................... 342
12.3.5 Cooperative Catalysis by Multi-Functionalized
Heterogeneous Catalyst System .................. 346
12.3.6 Tuning the Selectivity of Multi-
Functionalized Hetergeneous Catalysts by
Gatekeeping Effect ............................. 348
12.3.7 Synergistic Catalysis by General Acid and
Base Bifunctionalized MSN Catalysts ............ 351
12.4 Other Heterogeneous Catalyst System on Non-Silica
Support ............................................... 354
12.5 Conclusion ............................................ 354
References ................................................. 356
13 Nanotechnology for Carbon Dioxide Capture .................. 359
Richard R. Willis, Annabelle Benin, Randall Q Snurr, and
Öznür Yazaydin
13.1 Introduction .......................................... 359
13.2 CO2 Capture Processes ................................. 364
13.3 Nanotechnology for CO2 Capture ........................ 366
13.4 Porous Coordination Polymers for CO2 Capture .......... 371
References ................................................. 395
14 Nanostructured Organic Light-Emitting Devices .............. 403
Juo-Hao Li, Jinsong Huang, and Yang Yang
14.1 Introduction .......................................... 403
14.2 Quantum Confinement and Charge Balance for OLEDs and
PLEDs ................................................. 405
14.2.1 Multilayer Structured OLEDs and PLEDs .......... 405
14.2.2 Charge Balance in a Polymer Blended System ..... 406
14.2.3 Interfacial Layer and Charge Injection ......... 411
14.2.3.1 I-V Characteristics ................... 412
14.2.3.2 Built-in Potential From Photovoltaic
Measurement ........................... 413
14.2.3.3 XPS/UPS Study of the Interface ........ 415
14.2.3.4 Comparison with Cs/Al Cathode ......... 420
14.3 Phosphorescent Materials for OLEDs and PLEDs .......... 421
14.3.1 Fluorescence and Phosphorescent Materials ...... 421
14.3.2 Solution-Processed Phosphorescent Materials .... 422
14.4 Multi-Photon Emission and Tandem Structure for OLEDs
and PLEDs ............................................. 428
14.5 The Enhancement of Light Out-Coupling ................. 429
14.6 Outlook for the Future of Nanostructured OLEDs and
PLEDs ................................................. 431
14.7 Conclusion ............................................ 432
References ................................................. 432
15 Electrochromic Materials and Devices for Energy Efficient
Buildings .................................................. 435
Claes-Göran Granqvist
15.1 Introduction .......................................... 435
15.2 Electrochromic Materials .............................. 437
15.2.1 Functional Principles and Basic Materials ...... 437
15.2.2 The Role of Nanostructure ...................... 439
15.2.3 The Cause of Optical Absorption ................ 443
15.3 Electrochromic Devices ................................ 445
15.3.1 Data on Foil-Based Devices with W Oxide and
Ni Oxide ....................................... 445
15.3.2 Au-Based Transparent Conductors ................ 449
15.3.3 Thermochromic VO2-Based Films for Use with
Electrochromic Devices ......................... 451
15.4 Conclusions and Remarks ............................... 452
References .................................................... 455
Index ......................................................... 459
|