About the Editors ............................................ XIII
List of Contributors ........................................... XV
1 Atom Economy - Principles and Some Examples .................. 1
Audrey Moores
1.1 Introduction ............................................ 1
1.2 Principle of Atom Economy ............................... 2
1.2.1 Atom Economy: a Pillar of Green Chemistry ........ 2
1.2.2 Principle and Criteria ........................... 3
1.2.3 Impact of Atom Economy on the Chemical
Industry ......................................... 5
1.2.4 Atom Economy Tool Box ............................ 5
1.3 Atom Economical by Design: Examples of Reactions
Relying on С Activation ................................. 6
1.3.1 Tandem Reactions Involving Hydrogen Transfer ..... 7
1.3.2 Selective C-H Activation for C-C Bond
Formation ........................................ 9
1.4 Conclusion ............................................. 12
References ............................................. 13
2 Catalysis Involving Fluorous Phases: Fundamentals and
Directions for Greener Methodologies ........................ 17
John A. Cladysz
2.1 Introduction ........................................... 17
2.2 Directions for Greener Fluorous Methodologies .......... 19
2.3 Solvents for Fluorous Chemistry ........................ 21
2.4 Ponytails and Partition Coefficients ................... 23
2.5 Specific Examples of Catalyst Recovery that Exploit
Temperature-dependent Solubilities ..................... 24
2.5.1 Two Early Examples .............................. 24
2.5.2 First Examples from the Author's Laboratory ..... 28
2.5.3 Concurrent Work by Ishihara and Yamamoto ........ 28
2.5.4 Additional Examples from Other Research
Groups .......................................... 28
2.5.5 Additional Examples from the Author's
Laboratory ...................................... 29
2.6 Specific Examples of Catalyst Recovery that Exploit
Fluorous Solid Phases .................................. 30
2.6.1 Fluoropolymer Supports .......................... 30
2.6.2 Fluorous Silica Gel Supports .................... 32
2.6.3 Approaches Involving CO2 Pressure ............... 34
2.6.4 Fluorous Solid-phase Extractions ................ 34
2.7 Summary and Perspective ................................ 35
References ............................................. 36
3 Chemistry and Applications of Iron-TAML Catalysts in Green
Oxidation Processes Based on Hydrogen Peroxide .............. 39
TerrenceJ. Collins, Sushil K. Khetan, and Alexander
D. Ryabov
3.1 Introduction ........................................... 39
3.2 Properties of Fe-TAMLs and Mechanisms of Oxidation
with Hydrogen Peroxide ................................. 40
3.2.1 Properties of Tetraamido Macrocyclic Iron(III)
Complexes in the Solid State and in Water ....... 40
3.2.1.1 Solid-State Structure and Speciation
in Water ............................... 40
3.2.1.2 Binding of Axial Ligands in Water ...... 42
3.2.2 Demetalation of Fe-TAMLs ........................ 45
3.2.2.1 Induced by the Proton (Specific
Acid) .................................. 45
3.2.2.2 Induced by General Acids ............... 46
3.2.3 Understanding Mechanisms of Catalysis by
Fe-TAML Activators of Hydrogen Peroxide ......... 48
3.2.3.1 General Mechanism ...................... 48
3.2.3.2 Mechanism of Benzoyl Peroxide
Activation ............................. 50
3.2.3.3 Nature of Oxidized ТАМLs: Hypotheses
and Facts .............................. 51
3.2.4 The Activity-Stability Parameterization of
Homogeneous Green Oxidation Catalysts ........... 54
3.2.4.1 Kinetic Model for Parameterization ..... 54
3.2.4.2 Model Verifications .................... 59
3.3 Applications of Fe-TAMLs ............................... 61
3.3.1 Degradation of Phosphorothioate and Phosphate
Esters .......................................... 61
3.3.1.1 Total Degradation of Organophosphorus
(OP) Pesticides ........................ 61
3.3.1.2 Decontamination of Chemical Warfare
Agents ................................. 63
3.3.2 Sulfoxidation Reactions ......................... 64
3.3.2.1 Reactions of Organic Sulfides .......... 64
3.3.2.2 Decontamination of Sulfur Mustard ...... 64
3.3.2.3 Removal of Benzothiophene and
Dibenzothiophenes from Diesel .......... 65
3.3.3 Breaking of Disulfide Bonds and the Likely
Significance for the Disinfection of Spores ..... 66
3.3.3.1 Oxidative Rupture of Organic
Disulfides ............................. 66
3.3.3.2 Deactivation of Microbial Pathogens .... 66
3.3.4 Oxidative Degradation of Phenols ................ 67
3.3.4.1 Total Degradation of Trichloro- and
Pentachlorophenols ..................... 67
3.3.4.2 Total Degradation of Nitrophenols ...... 68
3.3.5 Degradation of Emerging Micropollutants ......... 69
3.3.5.1 Endocrine-disrupting Compounds ......... 70
3.3.5.2 Degradation of Pharmaceutical Active
Ingredients (PAIs) ..................... 70
3.3.6 Bleaching of Azo Dyes ........................... 71
3.3.7 Pulp Bleaching and Craft Mill Effluent
Treatment (PFe Process)
3.4 Conclusion ............................................. 73
References ............................................. 74
4 Microwave-Accelerated Homogeneous Catalysis in Water ........ 79
Luke R. Odell and Mats Larhed
4.1 Introduction ........................................... 79
4.1.1 Microwave Heating ............................... 79
4.1.2 Water as a Green Reaction Medium ................ 81
4.1.3 Homogeneous Transition Metal Catalysis .......... 81
4.1.4 Microwave-Assisted Metal Catalysis in Water ..... 82
4.2 Suzuki-Miyaura Reactions ............................... 82
4.3 The Stille Reaction .................................... 85
4.4 The Hiyama Cross-Coupling Reaction ..................... 86
4.5 The Heck Reaction ...................................... 86
4.6 Carbonylation Reactions ................................ 88
4.7 The Sonogashira Reaction ............................... 90
4.8 Aryl-Nitrogen Couplings ................................ 91
4.9 Aryl-Oxygen Couplings .................................. 92
4.10 Miscellaneous Transformations .......................... 92
4.11 Conclusion ............................................. 94
References .................................................. 95
5 Ionic Liquids and Catalysis: the IFP Biphasic Difasol
Process ...................................................... 1
Hélène Olivier-Bourbigou, Frédéric Favre, Alain Forestière,
and François Hugues
5.1 I ntroduction ......................................... 101
5.2 The Solvent in Catalytic Reactions .................... 102
5.2.1 Non-Aqueous Ionic Liquids ...................... 103
5.2.2 Applications of Non-Aqueous Ionic Liquids in
Catalysis ...................................... 104
5.3 The Catalytic Oligomerization of Olefins .............. 104
5.3.1 The Homogeneous Dimersol Process ............... 106
5.3.1.1 The Reaction .......................... 106
5.3.1.2 The Process ........................... 107
5.3.1.3 Effect of Some Parameters ............. 108
5.3.1.4 Process Performance: the Case of
Dimersol X (Transformation
ofButenes) ............................ 109
5.3.1.5 Economics of the Dimersol X Process ... 109
5.3.1.6 Dimersol Process Limitations .......... 110
5.3.2 The Biphasic Approach .......................... 110
5.3.2.1 The Choice of the Ionic Liquid ........ 110
5.3.2.2 Production of the Ionic Liquid ........ 113
5.4 The Biphasic Difasol Process .......................... 113
5.4.1 The Biphasic Transformation of Butenes (Pilot
Development) ................................... 114
5.4.1.1 The Difasol Process: Different
Process Schemes and Estimated
Performances .......................... 115
5.4.1.2 Economics of the Difasol Process ...... 118
5.4.2 The Biphasic Transformation of Propylene ....... 119
5.5 Conclusion ............................................ 124
References ............................................ 124
6 Immobilization and Compartmentalization of Homogeneous
Catalysts .................................................. 127
Christian Müller and Dieter Vogt
6.1 Introduction .......................................... 127
6.2 Soluble Dendrimer-bound Homogeneous Catalysts ......... 128
6.2.1 Covalently Linked Dendrimer-bound Catalysts .... 128
6.2.1.1 Carbosilane Dendrimers as Soluble
Supports .............................. 129
6.2.1.2 Poly(Benzyl Ether) Dendrimers as
Soluble Supports ...................... 132
6.2.1.3 DAB Dendrimers as Soluble Supports .... 133
6.2.1.4 РАМАМ Dendrimers as Soluble
Supports .............................. 134
6.2.1.5 PPI Dendrimers as Soluble Supports .... 134
6.2.2 Non-covalently Linked Dendrimer-bound
Catalysts ...................................... 136
6.3 Polymer-bound Homogeneous Catalysts ................... 138
6.3.1 Covalently Linked Polymer-bound Catalysts ...... 138
6.3.1.1 Molecular Weight Enlargement for
Continuous Homogeneous Catalysis ...... 138
6.3.1.2 Soluble Polymer-supported Catalysts
for Liquid-Liquid Recovery of
Catalysts ............................. 144
6.3.2 Electrostatically Bound Catalysts .............. 146
6.4 Conclusion and Outlook ................................ 149
References ............................................ 149
7 Industrial Applications of Homogeneous Enantioselective
Catalysts .................................................. 185
Hans-Ulrich Blaser, Garrett Hoge, Benoît Pugin, and Felix
Spindler
7.1 Introduction and Scope ................................ 153
7.2 Critical Factors for the Technical Application of
Homogeneous Enantioselective Catalysts ................ 155
7.2.1 Characteristics of the Manufacture of
Enantiomerically Enriched Products ............. 155
7.2.2 Characteristics of Enantioselective Catalytic
Processes ...................................... 156
7.2.3 Critical Factors for the Application of
Enantioselective Catalysts ..................... 156
7.2.4 Classification of Enantioselective
Transformations ................................ 157
7.3 Industrial Processes: General Comments ................ 157
7.4 Hydrogenation of C—C Bonds ............................ 159
7.4.1 Hydrogenation of Dehydro-α-amino Acid
Derivatives .................................... 159
7.4.1.1 L-Dopa (Monsanto, VEB Isis-Chemie) .... 159
7.4.1.2 Aspartame (Enichem/Anic, Degussa) ..... 161
7.4.1.3 Various Pilot- and Bench-Scale
Processes for the Synthesis of
α-Amino Acid Derivatives .............. 161
7.4.2 Hydrogenation of Dehydro-β-amino Acid
Derivatives .................................... 163
7.4.2.1 Sitagliptin (Merck) ................... 164
7.4.3 Hydrogenation of Simple Enamides and Enol
Acetates ....................................... 164
7.4.4 Hydrogenation of Itaconic Acid Derivatives ..... 166
7.4.5 Hydrogenation of Allylic Alcohols and
α, β-Unsaturated Acids ......................... 167
7.4.5.1 Hydrogenation of Allylic Alcohols ..... 167
7.4.5.2 Hydrogenation of α, β-Unsaturated
Acids ................................. 168
7.4.5.3 Hydrogenation for Synthon A of
Aliskiren (Speedel/Novartis) .......... 169
7.4.6 Hydrogenation of Miscellaneous C=C Systems ..... 171
7.4.6.1 Hydrogenation of a Biotin
Intermediate (Lonza) .................. 171
7.4.6.2 Synthesis of (+)-Methyl cts-
Dihydrojasmonate (Firmenich) .......... 172
7.4.6.3 Intermediate for Tipranavir ........... 172
7.4.6.4 Intermediate for Candoxatril .......... 173
7.4.6.5 Intermediate for Pregabalin ........... 173
7.5 Hydrogenation of C=0 Bonds ............................ 175
7.5.1 Hydrogenation of α-Functionalized Ketones ...... 175
7.5.2 Hydrogenation of β-Functionalized Ketones ...... 177
7.5.3 Hydrogenation of Aromatic Ketones .............. 178
7.6 Hydrogenation of C=N Bonds ............................ 181
7.6.1 (S)-Metolachlor Process ........................ 181
7.7 Oxidation Processes ................................... 183
7.7.1 Sulfide Oxidation .............................. 283
7.7.1.1 Esomeprazole (AstraZeneca) ............ 183
7.7.2 Sharpless Epoxidation .......................... 185
7.7.2.1 Glycidol (PPG-Sipsy) .................. 185
7.7.2.2 Disparlure (J.T. Baker) ............... 185
7.7.3 Jacobsen Epoxidation ........................... 186
7.7.3.1 Indene Oxide (ChiRex) ................. 186
7.7.4 Sharpless Dihydroxylation (AD) and
Aminohydroxylation ............................. 187
7.8 Miscellaneous Transformations (Isomerization,
Addition Reactions to C=C, C=O and C=N Bonds,
Opening of Oxacycles) ................................. 188
7.8.1 Isomerization, Allylic Alkylation .............. 188
7.8.1.1 (-)-Menthol Process (Takasago) ........ 188
7.8.1.2 Various Alkylation Reactions .......... 189
7.8.2 Addition Reactions to C=C Bonds ................ 189
7.8.2.1 Cilastatin (Sumitomo) ................. 190
7.8.3 Addition Reactions to C=0 Bonds ................ 190
7.8.4 Addition Reactions to C=N Bonds ................ 192
7.8.5 Ring-opening Reactions of Oxacycles ............ 193
7.9 Conclusions and Future Developments ................... 195
References ............................................ 196
8 Hydrogenation for С- С Bond Formation ...................... 205
John F. Bower and Michael J. Krische
8.1 By-product-free C-C Coupling and the Departure from
Preformed Organometallic Reagents ..................... 205
8.2 Hydrogenative Vinylation of Carbonyl Compounds and
Imines ................................................ 210
8.3 Hydrogenative Allylation of Carbonyl Compounds ........ 217
8.4 Hydrogenative Aldol and Mannich Additions ............. 224
8.5 Hydrogenative Acyl Substitution (Reductive
Hydroacylation) ....................................... 233
8.6 Hydrogenative Carbocyclization ........................ 236
8.7 Future Directions ..................................... 240
References ................................................. 241
9 Organocatalysis ............................................ 255
Isabelle McCort-Tranchepain, Morgane Petit, and
Peter I. Dalko
9.1 Introduction .......................................... 255
9.2 Catalysts ............................................. 256
9.2.1 Catalyst Functions ............................. 256
9.2.1.1 Brensted Acids ........................ 256
9.2.1.2 Lewis acids ........................... 257
9.2.1.3 Brønsted Bases ........................ 258
9.2.1.4 Lewis Bases ........................... 258
9.2.2 Catalyst Structures ............................ 258
9.2.2.1 Privileged Catalysts .................. 258
9.2.2.2 Synthetic Oligopeptides and Peptide
Analogs ............................... 263
9.3 Reactions ............................................. 264
9.3.1 Nucleophilic Additions to C=0 .................. 264
9.3.1.1 Aldol- and Knoevenagel-type
Additions ............................. 264
9.3.1.2 Allylation Reactions .................. 269
9.3.1.3 Nitroaldol (Henry) Reactions .......... 269
9.3.1.4 Hydrocyanation ........................ 270
9.3.1.5 The Morita-Baylis-Hillman (MBH)
Reaction .............................. 271
9.3.1.6 Asymmetric Acyl Transfer Reactions .... 273
9.3.2 Nucleophilic Additions to C=N .................. 276
9.3.2.1 Mannich-type Reactions ................ 276
9.3.2.2 The Nitro-Mannich (Aza-Henry)
Reaction .............................. 279
9.3.2.3 The Asymmetric Strecker Reaction ...... 280
9.3.2.4 Pictet-Spengler-type Cyclizations ..... 281
9.3.2.5 Reduction of Ketimines ................ 282
9.3.3 Additions to Alkenes ........................... 282
9.3.3.1 Michael Addition ...................... 282
9.3.3.2 Cyclopropanation ...................... 289
9.3.3.3 Epoxidation of Alkenes ................ 291
9.3.3.4 Cycloaddition reactions ............... 295
9.3.3.5 Transfer Hydrogenation of Alkenes ..... 301
9.3.4 Organocatalytic Multicomponent and Cascade
Reactions ...................................... 302
9.3.4.1 Single Catalyst-mediated Domino
Reactions ............................. 302
9.3.4.2 Multicatalyst Cascade Reactions ....... 307
9.4 Conclusion ....................................... 309
References ............................................ 309
10 Palladacycles in Catalysis ................................. 319
Jairton Dupont and Fabricio R. Flores
10.1 Introduction .......................................... 319
10.2 Catalyst Precursors for C-C and C-X (Heteroatom)
Coupling Reactions .................................... 320
10.2.1 Heck-Mirozoki Coupling ......................... 321
10.2.2 Suzuki Coupling ................................ 326
10.2.3 Stille, Kumada and Negishi Coupling ............ 328
10.2.4 Buchwald-Hartwig Animation ..................... 329
10.2.5 Sonogashira Coupling ........................... 330
10.2.6 Other Cross-coupling Reactions ................. 332
10.3 Other Catalytic Reactions Catalyzed by
Palladacycles ......................................... 333
10.3.1 Asymmetric Rearrangements ...................... 333
10.3.2 Aldol Condensations and Related Reactions ...... 334
10.3.3 Oxidation, Telomerization and Substitution
Reactions ...................................... 336
10.4 Conclusion ....................................... 337
References ............................................ 338
11 Homogeneous Catalyst Design for the Synthesis of
Aliphatic Polycarbonates and Polyesters .................... 343
Geoffrey W. Coates and Ryan С. Jeske
11.1 Introduction .......................................... 343
11.2 Synthesis of Aliphatic Polycarbonates from Epoxides
and Carbon Dioxide .................................... 344
11.2.1 Background ..................................... 346
11.2.2 Chromium Catalysts ............................. 348
11.2.3 Cobalt Catalysts for Epoxide-CO2
Copolymerization ............................... 352
11.2.4 Zinc Catalysts for Epoxide-CO2
Copolymerization ............................... 354
11.2.4.1 Zinc Phenoxides for Epoxide-CO2
Copolymerization ...................... 354
11.2.4.2 Single-site β-Diiminate Zinc
Catalysts for Epoxide-CO2 Coupling .... 355
11.2.4.3 Zinc Catalysts for Asymmetric
CHO-CO2 Copolymerization .............. 359
11.3 Synthesis of Aliphatic Polyesters ..................... 360
11.3.1 Synthesis of Poly(lactic Acid) ................. 361
11.3.1.1 Background ............................ 361
11.3.1.2 Aluminum Catalysts for the Synthesis
of PLA ................................ 362
11.3.1.3 Zinc Catalysts for the Synthesis of
PLA ................................... 364
11.3.1.1 Germanium Catalysts for the
Synthesis of PLA ...................... 365
11.3.1.5 Metal-free Catalysts for the
Synthesis of PLA ...................... 365
11.3.2 Synthesis of Poly(hydroxyalkanoate)s ........... 366
11.3.3 ROP of Other Cyclic Esters ..................... 367
11.3.4 Copolymerization of Epoxides and Cyclic
Anhydrides ..................................... 368
11.3.5 Summary ........................................ 370
12 The Aerobic Oxidation of p-Xylene to Terephthalic acid:
a Classic Case of Green Chemistry in Action ................ 375
Walt Partenheimer and Martyn Poliakoff
12.1 Introduction .......................................... 375
12.2 Methods of Making Terephthalic Acid Using
Stoichiometric Reagents ............................... 377
12.3 Methods for Preparing Terephthalic Acid Using Cobalt
Acetate and Dioxygen in Acetic Acid ................... 378
12.4 Adding Bromide to Improve Terephthalic Acid
Production Using Cobalt and Manganese Acetates in
Acetic Acid ........................................... 385
12.5 Potential Processes Using Water as a Solvent .......... 388
12.6 Summary and Final Comments ............................ 392
References ................................................. 394
Index ......................................................... 399
|