Foreword ..................................................... XIII
Epilogue ..................................................... XVII
List of Contributors .......................................... XIX
Part One uel Cells ............................................. 1
1 The Direct Ethanol Fuel Cell: a Challenge to Convert
Bioethanol Cleanly into Electric Energy ...................... 3
Claude Lamy, Christophe Coutanceau, and Jean-Michel
Leger
1.1 Introduction ............................................ 3
1.2 Principles and Different Kinds of Fuel Cells ............ 4
1.2.1 Working Principles of a Fuel Cell ................ 4
1.2.1.1 The Thermodynamics of Fuel Cells ........ 5
1.2.1.2 The Kinetics of Fuel Cells .............. 6
1.2.1.3 Catalysis of Fuel Cell Reactions ........ 9
1.2.2 Different Types of Fuel Cells ................... 14
1.2.2.1 Fuels for Fuel Cells ................... 14
1.2.2.2 Hydrogen-fed Fuel Cells ................ 16
1.2.2.3 Methanol-and Ethanol-fed Fuel Cells .... 16
1.3 Low-temperature Fuel Cells (PEMFCs and DAFCs) .......... 17
1.3.1 Proton Exchange Membrane Fuel Cell (PEMFC) ...... 17
1.3.1.1 Principle of a PEMFC ................... 17
1.3.1.2 The Proton Exchange Membrane ........... 18
1.3.1.3 The Electrode Catalysts ................ 19
1.3.1.4 The Membrane-Electrode Assembly ........ 19
1.3.1.5 The Bipolar Plates ..................... 19
1.3.1.6 Auxiliary and Control Equipment ........ 19
1.3.2 Direct Ethanol Fuel Cell (DEFC) ................. 21
1.3.2.1 Principle of the Direct Ethanol Fuel
Cell ................................... 21
1.3.2.2 Reaction Mechanisms of Ethanol
Oxidation .............................. 22
1.3.2.3 DEFC Tests ............................. 26
1.4 Solid Alkaline Membrane Fuel Cell (SAMFC) .............. 29
1.4.1 Development of a Solid Alkaline Membrane for
Fuel Cell Application ........................... 29
1.4.2 Anodic Catalysts in Alkaline Medium ............. 32
1.4.3 Cathodic Catalysts in Alkaline Medium ........... 38
1.5 Conclusion ................................. 42
References ...................................... 42
2 Performance of Direct Methanol Fuel Cells for Portable
Power Applications .......................................... 47
Xiaoming Ren
2.1 Introduction ........................................... 47
2.2 Experimental ........................................... 49
2.3 Results and Discussion ................................. 51
2.3.1 Water Balance, Maximum Air Feed Rate and
Implications for Cathode Performance ............ 51
2.3.2 Stack Performance ............................... 57
2.3.3 Thermal Balance and Waste Heat Rejection ........ 64
2.3.4 Stack Life Test Results ......................... 65
2.4 Conclusions ............................................ 67
References ...................................... 68
3 Selective Synthesis of Carbon Nanofibers as Better
Catalyst Supports for Low-temperature Fuel Cells ............ 71
Seong-Hwa Hong, Mun-Suk Jun, Isao Mochida, and Seong-Ho
Yoon
3.1 Introduction ........................................... 71
3.2 Preparation and Characterization of CNFs and Fuel
Cell Catalysts ......................................... 73
3.2.1 Preparation of Typical CNFs ..................... 73
3.2.2 Preparation of Nanotunneled Mesoporous H-CNF .... 73
3.2.3 Preparation of Fuel Cell Catalysts .............. 74
3.2.4 Performance Characterization of Fuel Cell
Catalysts ....................................... 74
3.3 Results ................................................ 74
3.3.1 Structural Effects of CNFs ...................... 74
3.3.2 Catalytic Performance of CNFs in Half and
Single Cells .................................... 76
3.3.3 Structure of Nanotunneled Mesoporous Thick
H-CNF ........................................... 78
3.3.4 Catalytic Performance of Nanotunneled
Mesoporous Thick H-CNF .......................... 78
3.3.5 Effect of the Dispersion of Thin and Very Thin
H-CNFs on the Catalyst Activity ................. 81
3.4 Discussion ............................................. 84
References .................................................. 86
4 Towards Full Electric Mobility: Energy and Power Systems .... 89
Pietro Perlo, Marco Ottella, Nicola Corino, Francesco
Pitzalis, Mauro Brignone, Daniele Zanello, Cianfranco
Innocenti, Luca Belforte, and Alessandro Ziggiotti
4.1 Introduction ........................................... 89
4.2 The Current Grand Challenges ........................... 89
4.3 Power-Energy Needed in Vehicles ........................ 90
4.3.1 Basic Formulation ............................... 90
4.3.2 Well to Wheel Evaluations ....................... 92
4.3.3 Specific Calculations for Ideal Electric
Powertrains ..................................... 92
4.3.4 A Roadmap of Feasibility with Batteries and
Supercapacitors ................................. 95
4.3.5 The Need for Range Extenders .................... 96
4.3.5.1 Direct Thermoelectric Generators ....... 98
4.4 A Great New Opportunity for True Zero Emissions ....... 101
4.5 Advanced Systems Integration .......................... 102
4.6 Conclusion and Perspectives ........................... 103
References ................................................. 104
Part Two Hydrogen Storage .................................... 107
5 Materials for Hydrogen Storage ............................. 109
Andreas Züttel
5.1 The Primitive Phase Diagram of Hydrogen ............... 109
5.2 Hydrogen Storage Methods .............................. 109
5.3 Pressurized Hydrogen .................................. 111
5.3.1 Properties of Compressed Hydrogen .............. 112
5.3.2 Pressure Vessel ................................ 113
5.3.3 Volumetric and Gravimetric Hydrogen Density .... 114
5.3.4 Microspheres ................................... 115
5.4 Liquid Hydrogen ....................................... 117
5.4.1 Liquefaction Process ........................... 118
5.4.2 Storage Vessel ................................. 119
5.4.3 Gravimetric and Volumetric Hydrogen Density .... 120
5.5 Physisorption ......................................... 121
5.5.1 Van der Waals Interaction ...................... 121
5.5.2 Adsorption Isotherm ............................ 122
5.5.3 Hydrogen and Carbon Nanotubes .................. 123
5.6 Metal Hydrides ........................................ 128
5.6.1 Interstitial Hydrides .......................... 128
5.6.2 Hydrogen Absorption ............................ 130
5.6.3 Empirical Models ............................... 133
5.6.4 Lattice Gas Model .............................. 137
5.7 Complex Hydrides ...................................... 141
5.7.1 Tetrahydroalanates ............................. 143
5.7.2 Tetrahydroborates .............................. 148
5.8 Chemical Hydrides (Hydrolysis) ........................ 154
5.8.1 Zinc Cycle ..................................... 154
5.8.2 Borohydride .................................... 156
5.9 New Hydrogen Storage Materials ........................ 157
5.9.1 Amides and Imides (-NH2, =NH) .................. 158
5.9.2 bcc Alloys ..................................... 160
5.9.3 A1H3 ........................................... 160
5.9.4 Metal Hydrides with Short H-H-Distance ......... 161
5.9.5 MgH2 with a New Structure ...................... 162
5.9.6 Destabilization of MgH2 by Alloy Formation ..... 162
5.9.7 Ammonia Storage ................................ 163
5.9.8 Borazane ....................................... 163
References ................................................. 165
Part Three H2 and Hydrogen Vectors Production ................. 171
6 Catalyst Design for Reforming of Oxygenates ................ 173
Loredana De Rogatis and Paolo Fornasiero
6.1 Introduction .......................................... 173
6.2 Catalyst Design ....................................... 179
6.2.1 Impregnated Catalysts: the Role of Metal,
Support and Promoters .......................... 181
6.2.2 Emerging Strategies: Embedded Catalysts ........ 183
6.3 Reforming Reactions: Process Principles ............... 185
6.3.1 Catalytic Steam Reforming ...................... 185
6.3.2 Catalytic Partial Oxidation .................... 188
6.3.3 Autothermal Reforming .......................... 189
6.3.4 Aqueous Phase Reforming ........................ 190
6.4 Key Examples of Oxygenate Reforming Reactions ......... 193
6.4.1 Methanol ....................................... 193
6.4.2 Ethanol ........................................ 197
6.4.3 Dimethyl Ether ................................. 203
6.4.4 Acetic Acid .................................... 207
6.4.5 Sugars ......................................... 210
6.4.6 Ethylene Glycol ................................ 214
6.4.7 Glycerol ....................................... 219
6.5 Conclusions ............................... 222
6.6 List of Abbreviations ..................... 223
References ................................................. 224
7 Electrocatalysis in Water Electrolysis ..................... 235
Edoardo Guerrini and Sergio Trasatti
7.1 Introduction .......................................... 235
7.2 Thermodynamic Considerations .......................... 237
7.3 Kinetic Considerations ................................ 239
7.3.1 Equilibrium Term (ΔE) .......................... 240
7.3.2 Ohmic Dissipation Term (IR) .................... 240
7.3.2.1 Cell Design ........................... 241
7.3.3 Stability Term (ΔVt) ........................... 242
7.3.4 Overpotential Dissipation Term (En) ............ 243
7.3.5 Electrocatalysis ............................... 244
7.3.5.1 Theory of Electrocatalysis ............ 245
7.4 The Hydrogen Evolution Reaction ....................... 248
7.4.1 Reaction Mechanisms ............................ 248
7.4.2 Electrocatalysis ............................... 249
7.4.3 Materials for Cathodes ......................... 251
7.4.4 Factors of Electrocatalysis .................... 252
7.5 The Oxygen Evolution Reaction ......................... 255
7.5.1 Reaction Mechanisms ............................ 255
7.5.2 Anodic Oxides .................................. 256
7.5.3 Thermal Oxides (DSA) ........................... 257
7.5.4 Electrocatalysis ............................... 259
7.5.5 Factors of Electrocatalysis .................... 260
7.5.6 Intermittent Electrolysis ...................... 263
7.6 Electrocatalysts: State-of-the-Art ........ 264
7.7 Water Electrolysis: State-of-the-Art ...... 265
7.8 Beyond Oxygen Evolution ................... 265
References ................................................. 267
8 Energy from Organic Waste: Influence of the Process
Parameters on the Production of Methane and Hydrogen ....... 271
Michele Aresta and Angela Dibenedetto
8.1 Introduction .......................................... 271
8.2 Experimental .......................................... 273
8.2.1 Methanation of Residual Biomass ................ 273
8.2.2 Bioconversion of Glycerol ...................... 274
8.2.2.1 Characterization of Strains K1-K4 ..... 274
8.2.2.2 Use of Strains Kl, K2 and К3 .......... 274
8.2.2.3 Use of Strain K4 ...................... 274
8.2.2.4 Tests Under Aerobic Conditions ........ 275
8.2.2.5 Tests Under Microaerobic or
Anaerobic Conditions .................. 275
8.3 Results and Discussion ................................ 275
8.3.1 Biogas from Waste .............................. 275
8.3.2 Dihydrogen from Bioglycerol .................... 279
References ................................................. 284
9 Natural Gas Autothermal Reforming: an Effective Option
for a Sustainable Distributed Production of Hydrogen ....... 287
Paolo Ciambelli, Vincenzo Palma, Emma Palo, and Gaetano
laquaniello
9.1 Introduction .......................................... 287
9.2 Autothermal Reforming: from Chemistry to
Engineering ........................................... 294
9.2.1 The Catalyst ................................... 294
9.2.2 Kilowatt-scale ATR Fuel Processors ............. 298
9.3 Thermodynamic Analysis ................................ 299
9.3.1 Effect of Preheating the Reactants ............. 300
9.3.2 Effect of O2:CH4 and H2O:CH4 Molar Feed
Ratios ......................................... 300
9.4 A Case Study .......................................... 303
9.4.1 Laboratory Apparatus and ATR Reactor ........... 303
9.4.2 ATR Reactor Setup: Operating Conditions ........ 306
9.4.3 ATR Reactor Setup: Start-up Phase .............. 306
9.4.4 ATR Reactor Setup: Influence of Preheating
the Reactants .................................. 307
9.4.5 Catalytic Activity Test Results ................ 309
9.5 Economic Aspects ...................................... 313
9.6 Conclusions and Perspectives .......................... 316
References ............................................ 317
Part Four Industrial Catalysis for Sustainable Energy ........ 321
10 The Use of Catalysis in the Production of High-quality
Biodiesel .................................................. 323
Nicoletta Ravasio, Federica Zaccheria, and Rinaldo Psaro
10.1 Introduction .......................................... 323
10.2 Heterogeneous Transesterification and Esterification
Catalysts ............................................. 328
10.2.1 Heterogeneous Basic Catalysts .................. 328
10.2.2 Heterogeneous Acid Catalysts ................... 330
10.3 Selective Hydrogenation in Biodiesel Production ....... 336
10.4 Conclusions and Perspectives .......................... 341
References ................................................. 342
11 Photovoltaics - Current Trends and Vision for the Future ... 345
Francesco Ferrazza
11.1 Introduction .......................................... 345
11.2 Market: Present Situation and Challenges Ahead ........ 346
11.3 Crystalline Silicon Technology ........................ 348
11.3.1 From Feedstock to Wafers ....................... 348
11.3.2 From Wafers to Cells and Modules ............... 349
11.3.3 Where to Cut Costs ............................. 351
11.4 Thin Films ............................................ 353
11.5 Other Technology-related Aspects ...................... 355
11.6 Advanced and Emerging Technologies .................... 357
11.7 System Aspects ........................................ 359
11.8 Conclusions ........................................... 361
References ................................................. 362
12 Catalytic Combustion for the Production of Energy .......... 363
Gianpiero Groppi, Cinzia Cristiani, Alessandra Beretta,
and Pio Forzatti
12.1 Introduction .......................................... 363
12.2 Lean Catalytic Combustion for Gas Turbines ............ 364
12.2.1 Principles and System Requirements ............. 364
12.2.2 Design Concepts and Performance ................ 366
12.2.2.1 Fully Catalytic Combustor ............. 366
12.2.2.2 Fuel Staging .......................... 367
12.2.2.3 Partial Catalytic Hybrid Combustor .... 367
12.3 Fuel-rich Catalytic Combustion ........................ 370
12.4 Oxy-fuel Combustion ................................... 372
12.5 Microcombustors ....................................... 373
12.6 Catalytic Materials ................................... 375
12.6.1 Structured Substrate ........................... 376
12.6.2 Active Catalyst Layer .......................... 376
12.6.2.1 PdO-based Catalysts ................... 377
12.6.2.2 Metal-substituted Hexaaluminate
Catalysts ............................. 381
12.6.2.3 Rich Combustion Catalysts ............. 382
12.7 Conclusions .......................................... 387
References ................................................. 388
13 Catalytic Removal of NOx Under Lean Conditions from
Stationary and Mobile Sources .............................. 393
Pio Forzatti, Luca Lietti, and Enrico Tronconi
13.1 Introduction .......................................... 393
13.2 Selective Catalytic Reduction ......................... 395
13.2.1 Standard SCR Process ........................... 395
13.2.2 SCR Applications: Past and Future .............. 399
13.2.3 Modeling of the SCR Reactor .................... 400
13.2.3.1 Steady-state Modeling of the SCR
Reactor ............................... 400
13.2.3.2 Unsteady-state Kinetics of the
Standard SCR Reaction ................. 401
13.2.3.3 Unsteady-state Models of the
Monolith SCR Reactor .................. 406
13.2.4 Fast SCR ....................................... 409
13.2.4.1 Mechanism of Fast SCR ................. 409
13.2.4.2 Unsteady-state Models of the
Monolith NO/NO2/NH3 SCR Reactor ....... 412
13.3 NOx Storage Reduction ................................. 414
13.3.1 NSR Technology ................................. 414
13.3.2 Storage of NOx ................................. 415
13.3.2.1 Mechanistic Features .................. 415
13.3.2.2 Kinetics .............................. 421
13.3.2.3 Effect of CO2 ......................... 422
13.3.3 Reduction of Stored NOx ........................ 424
13.3.3.1 Mechanism of the Reduction by H2 of
Stored NOx ............................ 425
13.3.3.2 Identification of the Reaction
Network During Reduction of Stored
NOx by H2 ............................. 428
13.4 Open Issues and Future Opportunities ................. 432
References ........................................... 433
Index ......................................................... 439
|