Wei P. Fracture mechanics: integration of mechanics, materials science, and chemistry (Cambridge, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWei P. Fracture mechanics: integration of mechanics, materials science, and chemistry. - Cambridge: Cambridge University Press, 2010. - xv, 214 p.: ill. - Contains appendix: publ. by R.P.Wei and colleagues. - ISBN 978-0-521-19489-1
 

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgments ................................................ xv
1  Introduction ................................................. 1
   1.1  Contextual Framework .................................... 2
   1.2  Lessons Learned and Contextual Framework ................ 4
   1.3  Crack Tolerance and Residual Strength ................... 5
   1.4  Crack Growth Resistance and Subcritical Crack Growth .... 7
   1.5  Objective and Scope of Book ............................. 7
   REFERENCES ................................................... 8
2  Physical Basis of Fracture Mechanics ......................... 9
   2.1  Classical Theories of Failure ........................... 9
        2.1.1  Maximum Principal Stress (or Tresca [3]) 
               Criterion ........................................ 9
        2.1.2  Maximum Shearing Stress Criterion ............... 10
        2.1.3  Maximum Principal Strain Criterion .............. 10
        2.1.4  Maximum Total Strain Energy Criterion ........... 10
        2.1.5  Maximum Distortion Energy Criterion ............. 11
        2.1.6  Maximum Octahedral Shearing Stress Criterion
               (von Mises [4] Criterion) ....................... 12
        2.1.7  Comments on the Classical Theories of Failure ... 12
   2.2  Further Considerations of Classical Theories ........... 12
   2.3  Griffith's Crack Theory of Fracture Strength ........... 14
   2.4  Modifications to Griffith's Theory ..................... 16
   2.5  Estimation of Crack-Driving Force G from Energy Loss 
        Rate (Irwin and Kies [8, 9]) ........................... 17
   2.6  Experimental Determination of G ........................ 20
   2.7  Fracture Behavior and Crack Growth Resistance Curve .... 21
   REFERENCES .................................................. 25
3  Stress Analysis of Cracks ................................... 26
   3.1  Two-Dimensional Theory of Elasticity ................... 26
        3.1.1  Stresses ........................................ 27
        3.1.2  Equilibrium ..................................... 27
        3.1.3  Stress-Strain and Strain-Displacement
               Relations ....................................... 28
        3.1.4  Compatibility Relationship ...................... 29
   3.2  Airy's Stress Function ................................. 30
        3.2.1  Basic Formulation ............................... 30
        3.2.2  Method of Solution Using Functions of Complex
               Variables ....................................... 32
   Complex Numbers ............................................. 32
   Complex Variables and Functions ............................. 32
   Cauchy-Riemann Conditions and Analytic Functions ............ 33
   3.3  Westergaard Stress Function Approach [8] ............... 34
        3.3.1  Stresses ........................................ 34
        3.3.2  Displacement (Generalized Plane Stress) ......... 35
        3.3.3  Stresses at a Crack Tip and Definition of 
               Stress Intensity Factor ......................... 36
   3.4  Stress Intensity Factors - Illustrative Examples ....... 38
        3.4.1  Central Crack in an Infinite Plate under
               Biaxial Tension (Griffith Problem) .............. 39
               Stress Intensity Factor ......................... 39
               Displacements ................................... 41
        3.4.2  Central Crack in an Infinite Plate under 
               a Pair of Concentrated Forces [2-4] ............. 41
        3.4.3  Central Crack in an Infinite Plate under Two 
               Pairs of Concentrated Forces .................... 43
        3.4.4  Central Crack in an Infinite Plate Subjected 
               to Uniformly Distributed Pressure on Crack
               Surfaces ........................................ 43
   3.5  Relationship between G and К ........................... 45
   3.6  Plastic Zone Correction Factor and Crack-Opening
        Displacement ........................................... 47
   Plastic Zone Correction Factor .............................. 47
   Crack-Tip-Opening Displacement (CTOD) ....................... 48
   3.7  Closing Comments ....................................... 48
   REFERENCES .................................................. 49
4  Experimental Determination of Fracture Toughness ............ 50
   4.1  Plastic Zone and Effect of Constraint .................. 50
   4.2  Effect of Thickness; Plane Strain versus Plane
        Stress ................................................. 52
   4.3  Plane Strain Fracture Toughness Testing ................ 54
        4.3.1  Fundamentals of Specimen Design and Testing ..... 55
        4.3.2  Practical Specimens and the "Pop-in" Concept .... 58
        4.3.3  Summary of Specimen Size Requirement ............ 60
        4.3.4  Interpretation of Data for Plane Strain
               Fracture Toughness Testing ...................... 61
   4.4  Crack Growth Resistance Curve .......................... 67
   4.5  Other Modes/Mixed Mode Loading ......................... 70
   REFERENCES .................................................. 70
5  Fracture Considerations for Design (Safety) ................. 72
   5.1  Design Considerations (Irwin's Leak-Before-Break
        Criterion) ............................................. 72
        5.1.1  Influence of Yield Strength and Material
               Thickness ....................................... 74
        5.1.2  Effect of Material Orientation .................. 74
   5.2  Metallurgical Considerations (Krafft's Tensile
        Ligament Instability Model [4]) ........................ 75
   5.3  Safety Factors and Reliability Estimates ............... 78
        5.3.1  Comparison of Distribution Functions ............ 81
        5.3.2  Influence of Sample Size ........................ 82
   5.4  Closure ................................................ 84
   REFERENCES .................................................. 85
6  Subcritical Crack Growth: Creep-Controlled Crack Growth ..... 86
   6.1  Overview ............................................... 86
   6.2  Creep-Controlled Crack Growth: Experimental Support .... 87
   6.3  Modeling of Creep-Controlled Crack Growth .............. 90
        6.3.1  Background for Modeling ......................... 92
        6.3.2  Model for Creep ................................. 93
        6.3.3  Modeling for Creep Crack Growth ................. 94
   6.4  Comparison with Experiments and Discussion ............. 97
        6.4.1  Comparison with Experimental Data ............... 97
        6.4.2  Model Sensitivity to Key Parameters ............. 99
   6.5  Summary Comments ...................................... 101
   REFERENCES ................................................. 101
7  Subcritical Crack Growth: Stress Corrosion Cracking and
   Fatigue Crack Growth (Phenomenology) ....................... 103
   7.1  Overview .............................................. 103
   7.2  Methodology ........................................... 104
        7.2.1  Stress Corrosion Cracking ...................... 106
        7.2.2  Fatigue Crack Growth ........................... 108
        7.2.3  Combined Stress Corrosion Cracking and
               Corrosion Fatigue .............................. 110
   7.3  The Life Prediction Procedure and Illustrations [4] ... 111
   Example 1 - Through-Thickness Crack ........................ 111
   Example 2 - For Surface Crack or Part-Through Crack ........ 114
   7.4  Effects of Loading and Environmental Variables ........ 115
   7.5  Variability in Fatigue Crack Growth Data .............. 118
   7.6  Summary Comments ...................................... 118
   REFERENCES ................................................. 119
8  Subcritical Crack Growth: Environmentally Enhanced Crack
   Growth under Sustained Loads (or Stress Corrosion
   Cracking) .................................................. 120
   8.1  Overview .............................................. 120
   8.2  Phenomenology, a Clue, and Methodology ................ 121
   8.3  Processes that Control Crack Growth ................... 123
   8.4  Modeling of Environmentally Enhanced (Sustained-
        Load) Crack Growth Response ........................... 124
   Modeling Assumptions ....................................... 126
        8.4.1  Gaseous Environments ........................... 127
               8.4.1.1  Transport-Controlled Crack Growth ..... 129
               8.4.1.2  Surface Reaction and Diffusion-
                        Controlled Crack Growth ............... 130
               8.4.2  Aqueous Environments .................... 131
               8.4.3  Summary Comments ........................ 133
   8.5  Hydrogen-Enhanced Crack Growth: Rate-Controlling
        Processes and Hydrogen Partitioning ................... 133
   8.6  Electrochemical Reaction-Controlled Crack Growth
        (Hydrogen Embrittlement) .............................. 137
   8.7  Phase Transformation and Crack Growth in Yttria-
        Stabilized Zirconia ................................... 141
   8.8  Oxygen-Enhanced Crack Growth in Nickel-Based
        Superalloys ........................................... 143
        8.8.1  Crack Growth ................................... 144
        8.8.2  High-Temperature Oxidation ..................... 146
        8.8.3  Interrupted Crack Growth ....................... 148
               8.8.3.1  Mechanically Based (Crack Growth)
                        Experiments ........................... 148
               8.8.3.2  Chemically Based Experiments
                        (Surface Chemical Analyses) ........... 149
        8.8.4  Mechanism for Oxygen-Enhanced Crack Growth in
               the P/M Alloys ................................. 153
        8.8.5  Importance for Material Damage Prognosis and
               Life Cycle Engineering ......................... 154
   8.9  Summary Comments ...................................... 155
   REFERENCES ................................................. 155
9  Subcritical Crack Growth: Environmentally Assisted
   Fatigue Crack Growth (or Corrosion Fatigue) ................ 158
   9.1  Overview .............................................. 158
   9.2  Modeling of Environmentally Enhanced Fatigue Crack
        Growth Response ....................................... 158
        9.2.1  Transport-Controlled Fatigue Crack Growth ...... 160
        9.2.2  Surface/Electrochemical Reaction-Controlled
               Fatigue Crack Growth ........................... 161
        9.2.3  Diffusion-Controlled Fatigue Crack Growth ...... 162
        9.2.4  Implications for Material/Response ............. 162
        9.2.5  Corrosion Fatigue in Binary Gas Mixtures [3] ... 162
        9.2.6  Summary Comments ............................... 164
   9.3  Moisture-Enhanced Fatigue Crack Growth in Aluminum
        Alloys [1, 2, 5] ...................................... 164
        9.3.1  Alloy 2219-T851 in Water Vapor [1, 2] .......... 164
        9.3.2  Alloy 7075-T651 in Water Vapor and Water [5] ... 167
        9.3.3  Key Findings and Observations .................. 168
   9.4  Environmentally Enhanced Fatigue Crack Growth in
        Titanium Alloys [6] ................................... 169
        9.4.1  Influence of Water Vapor Pressure on Fatigue
               Crack Growth ................................... 169
        9.4.2  Surface Reaction Kinetics ...................... 169
        9.4.3  Transport Control of Fatigue Crack Growth ...... 171
        9.4.4  Hydride Formation and Strain Rate Effects ...... 173
   9.5  Microstructural Considerations ........................ 175
   9.6  Electrochemical Reaction-Controlled Fatigue Crack
        Growth ................................................ 177
   9.7  Crack Growth Response in Binary Gas Mixtures .......... 180
   9.8  Summary Comments ...................................... 180
   REFERENCES ................................................. 181
10 Science-Based Probability Modeling and Life Cycle
   Engineering and Management ................................. 183
   10.1 Introduction .......................................... 183
   10.2 Framework ............................................. 184
   10.3 Science-Based Probability Approach .................... 185
        10.3.1 Methodology .................................... 185
        10.3.2 Comparison of Approaches ....................... 186
   10.4 Corrosion and Corrosion Fatigue in Aluminum Alloys,
        and Applications ...................................... 187
        10.4.1 Particle-Induced Pitting in an Aluminum
               Alloy .......................................... 187
        10.4.2 Impact of Corrosion and Fatigue Crack Growth
               on Fatigue Lives (S-N Response) ................ 191
        10.4.3 S-N versus Fracture Mechanics (FM) Approaches
               to Corrosion Fatigue and Resolution of
               a Dichotomy .................................... 193
        10.4.4 Evolution and Distribution of Damage in Aging
               Aircraft ....................................... 193
   10.5 S-N Response for Very-High-Cycle Fatigue (VHCF) ....... 194
   10.6 Summary ............................................... 197

REFERENCES .................................................... 197

APPENDIX: Publications By R.P. Wei and Colleagues ............. 199
   Overview/General ........................................... 199

Fracture ...................................................... 200
   Stress Corrosion Cracking/Hydrogen-Enhanced Crack Growth ... 200
   Deformation (Creep) Controlled Crack Growth ................ 203
   Oxygen-Enhanced Crack Growth ............................... 203
   Fatigue/Corrosion Fatigue .................................. 204
   Fatigue Mechanisms ......................................... 206
   Ceramics/Intermetallics .................................... 211
   Material Damage Prognosis/Life Cycle Engineering ........... 211
   Failure Investigations/Analyses ............................ 213
   Analytical/Experimental Techniques ......................... 213


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 18,254 bytes.
Посещение N 1945 c 28.09.2010