Sholl D.S. Density functional theory: a practical introduction (Hoboken, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSholl D.S. Density functional theory: a practical introduction / D.S.Sholl, J.A.Steckel. - Hoboken: Wiley, 2009. - xii, 238 p.: ill. - Incl. bibl. ref. - Ind.: p.235-238. - ISBN 978-0-470-37317-0
 

Оглавление / Contents
 
Preface ........................................................ xi

1  What Is Density Functional Theory? ........................... 1
   1.1  How to Approach This Book ............................... 1
   1.2  Examples of DFT in Action ............................... 2
        1.2.1  Ammonia Synthesis by Heterogeneous Catalysis ..... 2
        1.2.2  Embrittlement of Metals by Trace Impurities ...... 4
        1.2.3  Materials Properties for Modeling Planetary
               Formation ........................................ 6
   1.3  The Schrodinger Equation ................................ 7
   1.4  Density Functional Theory—From Wave Functions to
        Electron Density ....................................... 10
   1.5  Exchange-Correlation Functional ........................ 14
   1.6  The Quantum Chemistry Tourist .......................... 16
        1.6.1  Localized and Spatially Extended Functions ...... 16
        1.6.2  Wave-Function-Based Methods ..................... 18
        1.6.3  Hartree-Fock Method ............................. 19
        1.6.4  Beyond Hartree-Fock ............................. 23
   1.7  What Can DFT Not Do? ................................... 28
   1.8  Density Functional Theory in Other Fields .............. 30
   1.9  How to Approach This Book (Revisited) .................. 30
   References .................................................. 31
   Further Reading ............................................. 32

2  DFT Calculations for Simple Solids .......................... 35
   2.1  Periodic Structures, Supercells, and Lattice
        Parameters ............................................. 35
   2.2  Face-Centered Cubic Materials .......................... 39
   2.3  Hexagonal Close-Packed Materials ....................... 41
   2.4  Crystal Structure Prediction ........................... 43
   2.5  Phase Transformations .................................. 44
   Exercises ................................................... 46
   Further Reading ............................................. 47
   Appendix. Calculation Details ............................... 47

3  Nuts and Bolts of DFT Calculations .......................... 49
   3.1  Reciprocal Space and к Points .......................... 50
        3.1.1  Plane Waves and the Brillouin Zone .............. 50
        3.1.2  Integrals in к Space ............................ 53
        3.1.3  Choosing A: Points in the Brillouin Zone ........ 55
        3.1.4  Metals—Special Cases in k Space ................. 59
        3.1.5  Summary of к Space .............................. 60
   3.2  Energy Cutoffs ......................................... 61
        3.2.1  Pseudopotentials ................................ 63
   3.3  Numerical Optimization ................................. 65
        3.3.1  Optimization in One Dimension ................... 65
        3.3.2  Optimization in More than One Dimension ......... 69
        3.3.3  What Do I Really Need to Know about
               Optimization? ................................... 73
   3.4  DFT Total Energies—An Iterative Optimization Problem ... 73
   3.5  Geometry Optimization .................................. 75
        3.5.1  Internal Degrees of Freedom ..................... 75
        3.5.2  Geometry Optimization with Constrained Atoms .... 78
        3.5.3  Optimizing Supercell Volume and Shape ........... 78
   Exercises ................................................... 79
   References .................................................. 80
   Further Reading ............................................. 80
   Appendix. Calculation Details ............................... 81

4  DFT Calculations for Surfaces of Solids ..................... 83
   4.1  Importance of Surfaces ................................. 83
   4.2  Periodic Boundary Conditions and Slab Models ........... 84
   4.3  Choosing к Points for Surface Calculations ............. 87
   4.4  Classification of Surfaces by Miller Indices ........... 88
   4.5  Surface Relaxation ..................................... 94
   4.6  Calculation of Surface Energies ........................ 96
   4.7  Symmetric and Asymmetric Slab Models ................... 98
   4.8  Surface Reconstruction ................................ 100
   4.9  Adsorbates on Surfaces ................................ 103
        4.9.1  Accuracy of Adsorption Energies ................ 106
   4.10 Effects of Surface Coverage ........................... 107
   Exercises .................................................. 110
   References ................................................. 111
   Further Reading ............................................ 111
   Appendix. Calculation Details .............................. 112

5  DFT Calculations of Vibrational Frequencies ................ 113
   5.1  Isolated Molecules .................................... 114
   5.2  Vibrations of a Collection of Atoms ................... 117
   5.3  Molecules on Surfaces ................................. 120
   5.4  Zero-Point Energies ................................... 122
   5.5  Phonons and Delocalized Modes ......................... 127
   Exercises .................................................. 128
   Reference .................................................. 128
   Further Reading ............................................ 128
   Appendix. Calculation Details .............................. 129

6  Calculating Rates of Chemical Processes Using
   Transition State Theory .................................... 131
   6.1  One-Dimensional Example ............................... 132
   6.2  Multidimensional Transition State Theory .............. 139
   6.3  Finding Transition States ............................. 142
        6.3.1  Elastic Band Method ............................ 144
        6.3.2  Nudged Elastic Band Method ..................... 145
        6.3.3  Initializing NEB Calculations .................. 147
   6.4  Finding the Right Transition States ................... 150
   6.5  Connecting Individual Rates to Overall Dynamics ....... 153
   6.6  Quantum Effects and Other Complications ............... 156
        6.6.1  High Temperatures/Low Barriers ................. 156
        6.6.2  Quantum Tunneling .............................. 157
        6.6.3  Zero-Point Energies ............................ 157
   Exercises .................................................. 158

Reference ..................................................... 159
Further Reading ............................................... 159
Appendix. Calculation Details ................................. 160


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 10,459 bytes.
Посещение N 1984 c 28.09.2010