Rubinstein R.Y. Simulation and the Monte Carlo method (Hoboken, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRubinstein R.Y. Simulation and the Monte Carlo method / R.Y.Rubinstein, D.P.Kroese. - 2nd ed. - Hoboken: Wiley, 2008. - xvii, 345 p.: ill. - (Wiley series in probability and statistics). - Incl. bibl. ref. - Ind.: p.341-345. - ISBN 978-0-470-17794-5
 

Оглавление / Contents
 
 
Preface ...................................................... xiii
Acknowledgments .............................................. xvii

1.  Preliminaries ............................................... 1

    1.1.  Random Experiments .................................... 1
    1.2.  Conditional Probability and Independence .............. 2
    1.3.  Random Variables and Probability Distributions ........ 3
    1.4.  Some Important Distributions .......................... 5
    1.5.  Expectation ........................................... 6
    1.6.  Joint Distributions ................................... 7
    1.7.  Functions of Random Variables ........................ 10
          1.7.1.  Linear Transformations ....................... 11
          1.7.2.  General Transformations ...................... 12
    1.8.  Transforms ........................................... 13
    1.9.  Jointly Normal Random Variables ...................... 14
    1.10. Limit Theorems ....................................... 15
    1.11. Poisson Processes .................................... 16
    1.12. Markov Processes ..................................... 18
          1.12.1. Markov Chains ................................ 19
          1.12.2. Classification of States ..................... 29
          1.12.3. Limiting Behavior ............................ 21
          1.12.4. Reversibility ................................ 23
          1.12.5. Markov Jump Processes ........................ 24
    1.13. Efficiency of Estimators ............................. 26
          1.13.1. Complexity ................................... 28
    1.14. Information .......................................... 28
          1.14.1. Shannon Entropy .............................. 29
          1.14.2. Kullback-Leibler Cross-Entropy ............... 31
          1.14.3. The Maximum Likelihood Estimator and
                  the Score Function ........................... 32
          1.14.4. Fisher Information ........................... 33
    1.15. Convex Optimization and Duality ...................... 34
          1.15.1. Lagrangian Method ............................ 36
          1.15.2. Duality ...................................... 37
    Problems ................................................... 41
    References ................................................. 46

2.  Random Number, Random Variable, and Stochastic Process
    Generation ................................................. 49
    
    2.1.  Introduction ......................................... 49
    2.2.  Random Number Generation ............................. 49
    2.3.  Random Variable Generation ........................... 51
          2.3.1. Inverse-Transform Method ...................... 51
          2.3.2. Alias Method .................................. 54
          2.3.3. Composition Method ............................ 54
          2.3.4. Acceptance-Rejection Method ................... 55
    2.4.  Generating From Commonly Used Distributions .......... 58
          2.4.1. Generating Continuous Random Variables ........ 58
          2.4.2. Generating Discrete Random Variables .......... 63
    2.5.  Random Vector Generation ............................. 65
          2.5.1. Vector Acceptance-Rejection Method ............ 66
          2.5.2. Generating Variables from a Multinomial
                 Distribution .................................. 67
          2.5.3. Generating Uniform Random Vectors Over
                 a Simplex ..................................... 68
          2.5.4. Generating Random Vectors Uniformly
                 Distributed Over a Unit Hyperball
                 and Hypersphere ............................... 69
          2.5.5. Generating Random Vectors Uniformly
                 Distributed Over a Hyperellipsoid ............. 70
    2.6.  Generating Poisson Processes ......................... 70
    2.7.  Generating Markov Chains and Markov Jump Processes ... 72
          2.7.1. Random Walk on a Graph ........................ 72
          2.7.2. Generating Markov Jump Processes .............. 73
    2.8.  Generating Random Permutations ....................... 74
    Problems ................................................... 75
    References ................................................. 80
 
3.  Simulation of Discrete-Event Systems ....................... 81
    3.1.  Simulation Models .................................... 82
          3.1.1. Classification of S imulation Models .......... 84
    3.2.  Simulation Clock and Event List for DEDS ............. 85
    3.3.  Discrete-Event Simulation ............................ 87
          3.3.1. Tandem Queue .................................. 87
          3.3.2. Repairman Problem ............................. 91
    Problems ................................................... 94
    References ................................................. 96

4.  Statistical Analysis of Discrete-Event Systems ............. 97
    4.1.  Introduction ......................................... 97
    4.2.  Static Simulation Models ............................. 98
          4.2.1. Confidence Interval .......................... 100
    4.3.  Dynamic Simulation Models ........................... 101
          4.3.1 Finite-Horizon Simulation ..................... 102
          4.3.2 Steady-State Simulation ....................... 103
    4.4.  The Bootstrap Method ................................ 113
    Problems .................................................. 115
    References ................................................ 118

5.  Controlling the Variance .................................. 119
    5.1.  Introduction ........................................ 119
    5.2.  Common and Antithetic Random Variables .............. 120
    5.3.  Control Variables ................................... 123
    5.4.  Conditional Monte Carlo ............................. 125
          5.4.1. Variance Reduction for Reliability Models .... 126
    5.5.  Stratified Sampling ................................. 129
    5.6.  Importance Sampling ................................. 131
          5.6.1. Weighted Samples ............................. 132
          5.6.2. The Variance Minimization Method ............. 132
          5.6.3. The Cross-Entropy Method ..................... 136
    5.7.  Sequential Importance Sampling ...................... 141
          5.7.1. Nonlinear Filtering for Hidden Markov
          Models .............................................. 144
    5.8.  The Transform Likelihood Ratio Method ............... 148
    5.9.  Preventing the Degeneracy of Importance Sampling .... 151
          5.9.1. The Two-Stage Screening Algorithm ............ 153
          5.9.2. Case Study ................................... 158
    Problems .................................................. 161
    References ................................................ 165

6.  Markov Chain Monte Carlo .................................. 167
    6.1.  Introduction ........................................ 167
    6.2.  The Metropolis-Hastings Algorithm ................... 168
    6.3.  The Hit-and-Run Sampler ............................. 173
    6.4.  The Gibbs Sampler ................................... 175
    6.5.  Ising and Potts Models .............................. 178
          6.5.1. Ising Model .................................. 178
          6.5.2. Potts Model .................................. 179
    6.6.  Bayesian Statistics ................................. 181
    6.7.  Other Markov Samplers ............................... 185
          6.7.1. Slice Sampler ................................ 185
          6.7.2. Reversible Jump Sampler ...................... 186
    6.8.  Simulated Annealing ................................. 189
    6.9.  Perfect Sampling .................................... 192
    Problems .................................................. 194
    References ................................................ 199

7.  Sensitivity Analysis and Monte Carlo Optimization ......... 201
    7.1.  Introduction ........................................ 201
    7.2.  The Score Function Method for Sensitivity Analysis
          of DESS ............................................. 203
    7.3.  Simulation-Based Optimization of DESS ............... 211
          7.3.1. Stochastic Approximation ..................... 212
          7.3.2. The Stochastic Counterpart Method ............ 215
    7.4.  Sensitivity Analysis of DEDS ........................ 225
    Problems .................................................. 230
    References ................................................ 233

8.  The Cross-Entropy Method .................................. 235
    8.1.  Introduction ........................................ 235
    8.2.  Estimation of Rare-Event Probabilities .............. 236
          8.2.1. The Root-Finding Problem ..................... 245
          8.2.2. The Screening Method for Rare Events ......... 245
    8.3.  The CE Method for Optimization ...................... 249
    8.4.  The Max-cut Problem ................................. 253
    8.5.  The Partition Problem ............................... 259
          8.5.1. Empirical Computational Complexity ........... 260
    8.6.  The Traveling Salesman Problem ...................... 260
          8.6.1. Incomplete Graphs ............................ 265
          8.6.2. Node Placement ............................... 266
          8.6.3. Case Studies ................................. 267
    8.7.  Continuous Optimization ............................. 268
    8.8.  Noisy Optimization .................................. 269
    Problems .................................................. 271
    References ................................................ 275

9.  Counting via Monte Carlo .................................. 279
    9.1.  Counting Problems ................................... 279
    9.2.  Satisfiability Problem .............................. 280
          9.2.1. Random K-SAT {K-RSAT) ........................ 283
    9.3.  The Rare-Event Framework for Counting ............... 284
          9.3.1. Rare Events for the Satisfiability Problem ... 287
    9.4.  Other Randomized Algorithms for Counting ............ 288
          9.4.1. X* is a Union of Some Sets ................... 291
          9.4.2. Complexity of Randomized Algorithms:
                 FPRAS and FPAUS .............................. 294
          9.4.3. FPRAS for SATs in CNF ........................ 297
    9.5.  MinxEnt and Parametric MinxEnt ...................... 297
          9.5.1. The MinxEnt Method ........................... 297
          9.5.2. Rare-Event Probability Estimation Using
                 PME .......................................... 301
    9.6.  PME for Combinatorial Optimization Problems
          and Decision Making ................................. 306
    9.7.  Numerical Results ................................... 307
    Problems .................................................. 311
    References ................................................ 312

Appendix ...................................................... 315
A.1 Cholesky Square Root Method ............................... 315
A.2 Exact Sampling from a Conditional Bernoulli
    Distribution .............................................. 316
A.3 Exponential Families ...................................... 317
A.4 Sensitivity Analysis ...................................... 320
    A.4.1 Convexity Results ................................... 321
    A.4.2 Monotonicity Results ................................ 322
A.5 A Simple CE Algorithm for Optimizing the Peaks Function ... 323
A.6 Discrete-time Kalman Filter ............................... 323
A.7 Bernoulli Disruption Problem .............................. 324
A.8 Complexity of Stochastic Programming Problems ............. 326
    Problems .................................................. 334
    References ................................................ 335

Abbreviations and Acronyms .................................... 336

List of Symbols ............................................... 338
 
Index ......................................................... 341


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 16,319 bytes.
Посещение N 1950 c 28.09.2010