PREFACE ................................................... xix
CONTRIBUTORS .............................................. xxi
SECTION 1.1
1. Pulsed Laser Deposition of Complex Materials: Progress
Toward Applications ......................................... 3
David P. Norton
1.1. Introduction .......................................... 3
1.2. What Is PLD? .......................................... 4
1.3. Where Is Pulsed Laser Deposition Being Applied? ....... 9
1.3.1. Complex Oxide Film Growth ...................... 9
1.3.2. Epitaxial Interface and Superlattice
Formation ..................................... 10
1.3.3. Superconducting Electronic Devices ............ 11
1.4. Exploring Novel Oxide Devices Concepts ............... 14
1.4.1. Tunable Microwave Electronics ................. 15
1.4.2. Wide Bandgap Electronics ...................... 17
1.5. Thin-Film Optics ..................................... 20
1.6. Oxide Sensor Devices ................................. 21
1.7. Protective Coatings and Barriers ..................... 23
1.7.1. Biocompatible Coatings ........................ 24
1.8. Nanomaterial Synthesis ............................... 25
1.9. Polymer and Organic Thin Films ....................... 26
1.9.1. Biological Thin-Film Materials ............. 27
1.10. Summary .............................................. 28
References ................................................. 28
SECTION 2 ...................................................... 33
2. Resonant Infrared Pulsed Laser Ablation and Deposition
of Thin Polymer Films ...................................... 35
Daniel-Dennis McAlevy Bubb and Richard F. Haglund, Jr.
2.1. Technological Significance of Organic Thin-Film
Deposition ........................................... 36
2.2. Laser-Based Methods for Deposition of Polymer
Thin Films: An Overview .............................. 37
2.2.1. Pulsed Laser Deposition with UV Lasers ........ 37
2.2.2. Matrix-Assisted Pulsed Laser Evaporation ...... 37
2.2.3. Photosensitized Ablation and Deposition ....... 38
2.2.4. Resonant Infrared Pulsed Laser Deposition ..... 39
2.2.5. Summary of Techniques ......................... 41
2.3. Deposition, Ablation, and Characterization of
Selected Polymers .................................... 41
2.3.1. Characterization of Deposited Material ........ 41
2.3.2. Choice of Polymers for Early Studies .......... 44
2.3.3. Polyethylene Glycol ........................... 44
2.3.4. Polystyrene ................................... 47
2.3.5. Deposition of Application-Oriented Polymers
by RIR-PLD..................................... 49
2.4. Mechanism of Resonant Infrared Laser Ablation ........ 56
2.5. Lasers for Infrared Laser Ablation and Deposition .... 58
2.6. Conclusions .......................................... 59
References ........................................... 60
3. Deposition of Polymers and Biomaterials Using the
Matrix-Assisted Pulsed Laser Evaporation (MAPLE)
Process .................................................... 63
Alberto Piqué
3.1. Introduction ......................................... 63
3.2. Limitations of PLD for the Growth of Organic Thin
Films ................................................ 64
3.3. Fundamentals of the MAPLE Process .................... 64
3.3.1. Growth of Polymer Thin Films .................. 68
3.3.2. Growth of Biomaterial Thin Films .............. 72
3.4. Current Status of MAPLE: Challenges and
Opportunities ........................................ 75
3.5. Future of MAPLE ...................................... 79
3.6. Summary .............................................. 82
References ................................................. 82
4. In Situ Diagnostics by High-Pressure RHEED During PLD ...... 85
Guus Rijnders and Dave H. A. Blank
4.1. Introduction ......................................... 85
4.2. Basic Principles ..................................... 85
4.3. High-Pressure RHEED .................................. 87
4.3.1. Geometry and Basic Principles of RHEED ........ 87
4.3.2. Utility of RHEED: Surface Properties .......... 90
4.3.3. Utility of RHEED: Monitoring Thin-Film
Growth ........................................ 92
4.4. High-Pressure RHEED Setup ............................ 93
4.5. Conclusions .......................................... 96
References ................................................. 97
5. Ultrafast Laser Ablation and Film Deposition ............... 99
Eugene G. Gamaly, Andrei V. Rode, and
Barry Luther-Davies
5.1. Introduction ......................................... 99
5.2. Ablation by Short Independent Laser Pulses and
Deposition of Film .................................. 101
5.2.1. Short-Pulse Laser-Matter Interaction ......... 101
5.2.2. Ablation Mechanisms .......................... 105
5.2.3. Ablation Thresholds .......................... 107
5.2.4. Ablation Rate, Mass, and Depth ............... 110
5.2.5. Atomization of Laser Plume: Spatial Pulse
Shaping ...................................... 111
5.3. Cumulative Ablation of Solids by High-Repetition-
Rate Short-Pul ...................................... 117
5.3.1. Dwell Time and Number of Pulses per Focal
Spot ......................................... 118
5.3.2. Smoothing of the Evaporation Conditions on
the Surface .................................. 119
5.3.3. Ablation in Air and in Vacuum ................ 119
5.4. Experimental Results: Deposition of Thin Films by
Short-Pulse MHz Repetition Rate Laser ............... 121
5.4.1. Deposition of Amorphous Carbon Films ......... 121
5.4.2. Deposition of Chalcogenide Glass Films ....... 122
5.5. Short-Pulse High-Repetition-Rate Laser Systems ...... 123
5.5.1. Table-top 50-W Solid-State Ultrafast Laser
System ....................................... 124
5.5.2. Free-Electron Laser .......................... 125
5.6. Concluding Remarks .................................. 126
References ................................................ 127
6. Cross-Beam PLD: Metastable Film Structures from
Intersecting Plumes ....................................... 131
André Gorbunoff
6.1. Introduction ........................................ 131
6.1.1. Energetic Particles in PLD ................... 131
6.1.2. Origin of Metastable Film Structures
in PLD ....................................... 134
6.2. Technique of Cross-Beam PLD ......................... 137
6.2.1. Basic Idea and Instrumentation ............... 137
6.2.2. Spatio-energetical Characteristics of
the Plume in CBPLD ........................... 139
6.3. Nanoscale Multilayer Deposition ..................... 144
6.3.1. Morphological and Compositional Roughness
in PLD ....................................... 145
6.3.2. Det ermination of the Compositional
Profile ...................................... 145
6.4. Abnormal Phase Formation in Co-deposited Alloys ..... 149
6.4.1. Amorphous Fe-Al Alloys ....................... 149
6.4.2. Paramagnetic Fe-Cr Alloys .................... 151
6.5. Conclusions ......................................... 156
References ................................................ 158
7. Combinatorial Pulsed Laser Deposition ..................... 161
Ichiro Takeuchi
7.1. Introduction ........................................ 161
7.2. Combinatorial Approach to Materials ................. 162
7.3. Pulsed Laser Deposition for Fabrication of
Combinatorial Libraries ............................. 163
7.4. Synthesis Technique Using Thin-Film Precursors ...... 163
7.5. High-Throughput Thin-Film Deposition ................ 166
7.6. Combinatorial Laser Molecular Beam Epitaxy .......... 168
7.7. Composition Spreads and Combinatorial Materials
Science ............................................. 171
7.8. Conclusion .......................................... 175
References ................................................ 175
8. Growth Kinetics During Pulsed Laser Deposition ............ 177
Guus Rijnders and Dave H. A. Blank
8.1. Introduction ........................................ 177
8.2. Growth Modes at Thermodynamic Equilibrium ........... 177
8.3.1. Homoepitaxial Growth Modes ................... 179
8.3.2. Homoepitaxial Growth Study of SrTi03 ......... 180
8.4. Pulsed Laser Interval Deposition .................... 187
8.5. Conclusions ......................................... 189
References ................................................ 190
9. Large-Area Commercial Pulsed Laser Deposition ............. 191
Jim Greer
9.1. Introduction ........................................ 191
9.2. Advances in Large-Area PLD Films .................... 192
9.3. Issues with Scale-Up for PLD ........................ 195
9.3.1. Intelligent Windows .......................... 197
9.3.2. Substrate Heaters ............................ 198
9.3.3. Heaters for Coated Conductors ................ 202
9.3.4. Target Size and Manipulation ................. 205
9.3.5. Target Manipulation for Coated Conductors .... 206
9.3.6. Deposition Rate Monitors ..................... 209
9.4. Commercial Systems .................................. 210
9.5. Commercial Components ............................... 212
9.6. Conclusions ......................................... 213
References ................................................ 213
SECTION 3 ..................................................... 215
10. Coating Powders for Drug Delivery Systems Using
Pulsed Laser Deposition ................................... 217
James D. Talton, Barbel Eppler, Margaret I. Davis,
Andrew L. Mercado, and James M. Fitz-Gerald
10.1. Introduction 217
10.2. Background 218
10.2.1. Wet Powder Coating Techniques 219
10.2.2. Dry Powder Coating Techniques 219
10.2.3. Deposition of Polymer Thin Films 220
10.3. Laser-Assisted Methods of Coating Particles 221
10.3.1. Experimental Configurations 222
10.3.2. Polymeric Coating Materials 223
10.3.3. Particle Fluidization 223
10.4. Microencapsulated Pharmaceutical Formulations 224
10.4.1. Characterization of Deposited Polymers 224
10.4.2. Microencapsulated Inhaled Therapies 230
10.5. Manufacturing and Scaleup 234
10.6. Summary 235
References 236
11. Transparent Conducting Oxide Films ........................ 239
Heungsoo Kim
11.1. Introduction ........................................ 239
11.2.1. Electrical Properties ....................... 240
11.2.2. Optical Properties .......................... 240
11.3. Advantages of PLD for TCO Films ..................... 241
11.4. Optimum PLD Conditions for TCO Films ................ 242
11.4.1. Substrate Deposition Temperature ............ 242
11.4.2. Oxygen Deposition Pressure .................. 243
11.4.3. Film Thickness .............................. 244
11.4.4. Other Laser Conditions ...................... 244
11.5. Laser-Deposited TCO Films ........................... 245
11.5.1. ITO Films ................................... 245
11.5.2. Undoped and Doped ZnO Films ................. 250
11.5.3. Other n-Type TCO Films ...................... 251
11.5.4. p-Type TCO Films ............................ 251
11.6. Applications of TCO Films ........................... 253
11.6.1. Display Devices ............................. 253
11.6.2. Photovoltaic Devices ........................ 256
11.6.3. Transparent Thin-Film Field-Effect
Transistor (FET) ............................ 257
11.7. Conclusion and Future Directions .................... 258
References ................................................ 258
12. ZnO and ZnO-Related Compounds ............................. 261
Jacques Perrière, Eric Millon, and Valentin Craciun
12.1. Introduction ........................................ 261
12.2. ZnO Thin-Film Growth by PLD: General Features ....... 262
12.2.1. Historical Background ....................... 262
12.2.2. Surface Morphology and Texture .............. 264
12.2.3. Control of the Stoichiometry ................ 265
12.2.4. Recent Applications and Developments ........ 267
12.3. ZnO Epitaxial Thin Films ............................ 268
12.3.1. ZnO Epitaxial Growth on Sapphire ............ 269
12.3.2. ZnO Epitaxial Growth on Other Substrates .... 273
12.3.3. Epitaxial Growth of ZnO-Related Compounds ... 274
12.3.4. Main Applications of Epitaxial ZnO Films .... 275
12.4. ZnO Nanocrystalline Films ........................... 278
12.4.1. Nanosecond PLD under High Oxygen Pressure ... 279
12.4.2. Femtosecond PLD ............................. 281
12.4.3. Applications of Nanocrystalline ZnO Films ... 282
12.5. Conclusions and Future Perspectives ................. 284
References ................................................ 285
13. Group HI Nitride Growth ................................... 291
Donagh O'Mahony and James G. Lunney
13.1. Introduction ........................................ 291
13.2. Properties of Group III Nitrides and Group III
Metals .............................................. 292
13.2.1. Group HI Nitrides ........................... 292
13.2.2. Thermal Decomposition of Group III
Nitrides ............................................ 292
13.2.3. Group III Elements: Al, Ga, and In .......... 294
13.2.4. Target Preparation .......................... 295
13.3. Laser Ablation of Group III Nitrides and Group III
Metals .............................................. 295
13.3.1. General Characteristics of the Ablation
Process in PLD .............................. 295
13.3.2. Characteristics of the Ablation Process
in Vacuum ................................... 296
13.3.3. Plume-Background Gas Interaction ............ 298
13.4. Guidelines for Film Growth .......................... 300
13.4.1. Setting the Growth Parameters ............... 300
13.4.2. Film Growth in N2 ........................... 301
13.4.3. Film Growth in Other Atmospheres ............ 301
13.4.4. Substrates and Growth Temperature ........... 302
13.5. Selective Review of the Properties of AIN, GaN,
and InN Films Grown by PLD .......................... 302
13.5.1. Structural Properties ....................... 302
13.5.2. Electronic Properties ....................... 304
13.5.3. Optical Properties .......................... 304
13.6. Novel Areas of Research ............................. 305
13.6.1. Composites for Electronic and
Optoelectronic Applications ................. 305
13.6.2. Magnetic Doping: Diluted Magnetic
Semiconductors for Spin Electronics ......... 306
13.7. Summary and Outlook ................................. 307
References ................................................ 308
14. Pulsed Laser Deposition of High-Temperature
Superconducting Thin Films and Their Applications ......... 313
Bernd Schey
14.1. Introduction ........................................ 313
14.2. High-Temperature Superconductor Devices for
Electronic and Medical Applications ................. 314
14.2.1. High-Temperature Superconductor
Communication ............................... 314
14.2.2. Digital Electronics ......................... 318
14.2.3. SQUID Systems ............................... 320
14.3. Electric Power and Energy ........................... 323
14.3.1. Applications of Coated Conductors ........... 323
14.3.2. Coated Conductors: State of Development ..... 324
14.3.3. Future Trends ............................... 326
14.4. Potential of PLD in the Commercialization of HTS .... 326
References ................................................ 327
15. Diamond-Like Carbon: Medical and Mechanical
Applications .............................................. 333
Roger J. Narayan
15.1. Introduction ........................................ 333
15.2. Physical and Chemical Properties of Carbon .......... 333
15.3. Pulsed Laser Deposition of DLC ...................... 335
15.3.1. Effect of Wavelength and Fluence ............ 335
15.3.2. Effect of Substrate Temperature and
Vacuum ...................................... 336
15.4. Modifications to the Pulsed Laser Deposition
Technique ........................................... 338
15.5. Growth of DLC Films ................................. 339
15.6. Reducing Internal Compressive Stress in DLC
Thin Films .......................................... 340
15.7. Hydrogenated and Hydrogen-Free DLC .................. 344
15.8. Properties of DLC ................................... 346
15.9. DLC Applications .................................... 347
15.9.1. Medical Applications ........................ 347
15.9.2. Mechanical and Tribological Applications .... 352
15.10.Closing Remarks ..................................... 355
References ................................................ 355
16. Pulsed Laser Deposition of Metals ......................... 363
Hans-Ulrich Krebs
16.1. Introduction ........................................ 363
16.2. Deposition Technique ................................ 363
16.2.1. Typical Setup ............................... 363
16.2.2. Droplet Reduction ........................... 364
16.3. Energetic Particles ................................. 365
16.3.1. Formation of Energetic Particles ............ 365
16.3.2. Influence on Film Growth .................... 367
16.4. Deposition in Ultrahigh Vacuum ...................... 368
16.4.1. Deposition Rate and Angular Distribution .... 368
16.4.2. Stoichiometry Transfer ...................... 369
16.4.3. Homogeneity of Alloy Films .................. 369
16.4.4. Improved Film Growth ........................ 369
16.4.5. Small Grain Size ............................ 371
16.4.6. Internal Stress ............................. 371
16.4.7. Defect Formation ............................ 371
16.4.8. Interface Mixing ............................ 372
16.4.9. Interface Roughness ......................... 372
16.4.10.Metastable Phase Formation at Interfaces .... 372
16.4.11.Resputtering Effects ........................ 373
16.5. Deposition in Inert Gas Atmosphere .................. 373
16.5.1. Reduction of Implantation and
Resputtering ................................ 373
16.5.2. Changes in the Deposition Rate .............. 373
16.5.3. Changes of Film Properties .................. 374
16.6. Potential for Applications .......................... 375
16.6.1. Nonequilibrium Phases ....................... 375
16.6.2. Giant Magnetoresistance ..................... 376
16.6.3. Soft and Hard Magnetic Materials ............ 376
16.6.4. X-ray Mirrors ............................... 378
16.6.5. Compound Materials .......................... 378
16.7. Conclusions ......................................... 379
References ................................................ 380
SECTION 4. .................................................... 383
17. Optica] Waveguide Growth and Applications ................. 385
Robert W. Eason, Stephen J. Barrington, Christos
Grivas, Timothy C. May-Smith, and David P. Shepherd
17.1. Introduction ........................................ 385
17.2. Thin-Film Waveguide Fabrication Methods ............. 386
17.2.1. Waveguide Growth on an Existing Substrate ... 386
17.2.2. Waveguide Definition in an Existing Host .... 387
17.2.3. Pulsed Laser Deposition Waveguide Growth .... 387
17.3. Waveguide Structures ................................ 388
17.4. Optical Quality and Waveguide Loss .................. 390
17.4.1. Waveguide Loss .............................. 391
17.4.2. Loss Measurement Techniques ................. 392
17.4.3. Particulates on the Waveguide Surface ....... 394
17.5. Waveguides Grown by PLD ............................. 396
17.5.1. Garnets ..................................... 396
17.5.2. Oxide Materials ............................. 398
17.5.3. Ferroelectrics .............................. 399
17.5.4. Glasses ..................................... 400
17.5.5. Semiconductors .............................. 400
17.6. Waveguide Lasing Devices ............................ 401
17.6.1. Introduction to PLD Waveguide Lasers and
Active Optical Devices ...................... 401
17.6.2. Pulsed Laser Deposition Grown Waveguide
Lasers ...................................... 402
17.6.3. Future Directions ........................... 413
17.7. Conclusions and Closing Remarks: Tips for
Successful Waveguide Growth ......................... 415
References ................................................ 416
18. Biomaterials: New Issues and Breakthroughs for
Biomedical Applications ................................... 421
Valentin Nelea, Ion N. Mihailescu, and
Miroslav Jelínek
18.1. Introduction ........................................ 421
18.2. Biomaterials ........................................ 422
18.2.1. Biocompatible Materials Overview ............ 422
18.2.2. Hydroxylapatite and Other Calcium
Phosphates .................................. 423
18.2.3. Hydroxylapatite-Based Composites ............ 425
18.2.4. Diamond-like Carbon and Carbon-Based
Materials ................................... 425
18.3. Processing Methods .................................. 428
18.3.1. Current Deposition Methods: Advantages and
Limitations ................................. 428
18.3.2. Pulsed Laser Deposition of Hydroxylapatite
and Other Calcium Phosphate Thin Films ...... 431
18.3.3. Pulsed Laser Deposition of Bioglass and
Other Bioceramics ........................... 440
18.4. Characterization of Nanostructured Materials ........ 441
18.4.1. Chemical Composition and Stoichiometry ...... 441
18.4.2. Surface Morphology and Roughness
Parameters .................................. 443
18.4.3. Structure and Crystallinity ................. 443
18.4.4. Mechanical Properties and Performances ...... 444
18.5. Biocompatibility Studies and Response to
Living Media ........................................ 448
18.5.1. Overview of Biomedical Tests ................ 448
18.5.2. Biomedical Applications of Laser-
Fabricated Hydroxylapatite and
Bioglass Layers ............................. 449
18.5.3. Biomedical Application of Laser-Produced
Carbon and DLC Thin Films ................... 453
18.6. Development Trends .................................. 454
References ................................................ 456
19. Thermoelectric Materials .................................. 461
Anne Dauscher and Bertrand Lenoir
19.1. Introduction ........................................ 461
19.2. Current State of Thermoelectricity .................. 462
19.3. Thermoelectric Thin Films ........................... 465
19.3.1. Pulsed Laser Deposition of Conventional
Thermoelectric Materials .................... 465
19.3.2. Pulsed Laser Deposition of New
Thermoelectric Materials .................... 475
19.4. Thermoelectric Microdevices and Applications ........ 479
19.5. Conclusion .......................................... 481
References ................................................ 482
20. Piezoelectrics ............................................ 487
Floriana Craciun and Maria Dinescu
20.1. Introduction ........................................ 487
20.2. Optimization of the Deposition Conditions ........... 488
20.2.1. Piezoelectric Thin Films with
Ferroelectric Properties .................... 488
20.2.2. Nonferroelectric Piezoelectrics ............. 505
20.3. Dielectric and Piezoelectric Properties ............. 506
20.3.1. Effects of Internal Stress and Other
Factors on Ferroelectric Piezoelectric
Thin Films .................................. 506
20.3.2. Finite Size Effects ......................... 515
20.3.3. Domain-Wall Pinning and Relaxation .......... 516
20.4. Applications ........................................ 519
20.4.1. Microelectronic Devices ..................... 519
20.4.2. Microelectromechanical Systems (MEMS) ....... 522
20.5. Conclusions and Future Perspectives ................. 526
References ................................................ 526
21. Ferroelectric Thin Films for Microwave Device
Applications .............................................. 533
Chonglin Chen and Jim S. Horwitz
21.1. Introduction ........................................ 533
21.1.1. Microwave Oscillators ....................... 534
21.1.2. Microwave Phase Shifters .................... 535
21.1.3. Filters ..................................... 535
21.2. Epitaxial Growth of Ferroelectric Thin Films by
Pulsed Laser Ablation ............................... 535
21.2.1. Optimal Growth Conditions and Effects
on the Epitaxy .............................. 535
21.2.2. Epitaxial Growth of Ferroelectric
(Ba,Sr)TiO3 Thin Films ...................... 539
21.2.3. Epitaxial Growth of Ferroelectric
(Pb,Sr)Ti)3 Thin Films ...................... 541
21.2.4. Other Ferroelectric Thin Films .............. 543
21.3. Characterizations of Ferroelectric Thin Films ....... 544
21.3.1. Microstructure, Composition, Surface
Morphology, and Epitaxial Behavior .......... 545
21.3.2. Dielectric Properties of Ferroelectric
Thin Films .................................. 549
21.4. Defects in Ferroelectric Thin Films at
High Frequencies .................................... 550
21.4.1. Point Defects ............................... 550
21.4.2. Strain Effects on Dielectric Properties ..... 552
21.4.3. Formation of Antidomain Structures in
Ferroelectric Thin Films .................... 554
21.4.4. Effects from Vicinal Surfaces ............... 556
21.5. Techniques to Improve Dielectric Properties of
Ferroelectric Thin Films ............................ 557
21.6. Summary ............................................. 558
References ................................................ 559
22. Films for Electrochemical Applications .................... 563
Macarena J. Montenegro and Thomas Lippert
22.1. Introduction ........................................ 563
22.1.1. Description and History of the Most
Important Electrochemical Systems ........... 564
22.2. Selected Electrochemical Materials Prepared
by PLD .............................................. 568
22.2.1. Spinels ..................................... 568
22.2.2. Perovskites ................................. 569
22.3. Applications of PLD Films ........................... 569
22.3.1. Spinels in Li Ion Batteries ................. 569
22.3.2. Perovskites in Solid Oxide Fuel Cells ....... 574
22.3.3. Perovskites in Rechargeable Zn-Air
Batteries ................................... 576
22.4. Other Electrochemically Active Materials Deposited
by PLD .............................................. 579
22.4.1. NASICON ..................................... 579
22.4.2. Noble Metals in Polymer Electrolyte
Membrane Fuel Cells ......................... 580
22.5. Future Directions: Diamond-like Carbon .............. 581
22.6. Conclusion .......................................... 581
References ................................................ 582
23. Pulsed Laser Deposition of Tribological Coatings .......... 585
Andrey A. Voevodin, Jeffrey S. Zabinski, and
John G. Jones
23.1. Introduction ........................................ 585
23.2. Pulsed Laser Deposition Configuration
for Tribological Coating Growth ..................... 586
23.3. Correlations Between Process Parameters,
Plasma Characteristics, and Tribological
Coating Properties .................................. 587
23.3.1. Laser Wavelength and Fluence ................ 587
23.3.2. Background Gas Effects and Target
to Substrate Distance ....................... 588
23.3.3. Substrate Bias Influence .................... 590
23.3.4. Substrate Temperature ....................... 591
23.4. Plasma Characterization, Sensors, and
Process Control ..................................... 592
23.4.1. Plasma Characterization ..................... 592
23.4.2. Real-Time Sensors ........................... 593
23.4.3. Process Control ............................. 593
23.5. Hybrids of PLD with Other Deposition Techniques ..... 596
23.5.1. Hybrid of Magnetron Sputtering and Pulsed
Laser Deposition ............................ 596
23.5.2. Hybrid of Ion Beam and Pulsed Laser
Deposition .................................. 598
23.6. Tribological Coatings Produced by PLD and Hybrid
Techniques .......................................... 601
23.6.1. Monolithic Coatings ......................... 601
23.6.2. Functionally Gradient and
Nanolayered Coatings ........................ 602
23.6.3. Nanocrystalline/Amorphous Composites ........ 605
23.6.4. Multifunctional and Adaptive Coatings ....... 606
23.7. Future Directions ................................... 607
References ................................................ 608
SECTION 5 ..................................................... 611
24. Laser Ablation Synthesis of Single-Wall Carbon
Nanotubes: The SLS Model .................................. 613
André Gorbunoff and Oliver Jost
24.1. Introduction ........................................ 613
24.2. Laser-Furnace Technique ............................. 616
24.2.1. Typical Experimental Setup .................. 616
24.2.2. Characterization of SWNTs-Containing Soot ... 617
24.3. Solid-Liquid-Solid SWNT Formation Model ............. 620
24.3.1. Condensed-State Process ..................... 621
24.3.2. Nucleation of SWNTs ......................... 622
24.3.3. Nonequilibrium Melting of Catalyst
Particles ................................... 624
24.3.4. Wetting Factor .............................. 626
24.3.5. The SLS Model ............................... 626
24.3.6. First Second of the SWNT Life ............... 627
24.3.7. Optimization of SWNT Synthesis .............. 628
24.4. Conclusions ......................................... 629
References ................................................ 630
25. Quasicrystalline Thin Films ............................... 633
Philip R. Willmott
25.1. Introduction ........................................ 633
25.2. Present Status of Thin-Film Growth
of Quasicrystals .................................... 634
25.2.1. General Problems ............................ 635
25.2.2. Growth Techniques ........................... 635
25.3. Pulsed Laser Deposition of Quasicrystals ............ 635
25.3.1. Why PLD? .................................... 635
25.4. Summary and Outlook ................................. 644
References ................................................ 647
INDEX ......................................................... 649
|