Lin Y. Irregularities and prediction of major disasters (Boca Raton, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLin Y. Irregularities and prediction of major disasters / Y.Lin, S.Ouyang. - Boca Raton: Auerbach; London: Taylor & Francis, 2010. - xxii, 605 p. - (Systems evaluation, prediction and decision-making). - Ref.: p.571-575. - Ind.: p.577-605. - ISBN 978-1-4200-8745-1
 

Оглавление / Contents
 
Preface ........................................................ xv
About the Authors ............................................. xxi
1  Introduction ................................................. 1
   1.1  Analyzing Materials and Events, Analyzing Quantities,
        and the System of Science ............................... 3
   1.2  What Quantities Are and Where They Are From ............ 10
   1.3  Rotational Movements ................................... 13
   1.4  What Time Is ........................................... 14
   1.5  Irregular Information and Digital Structuralization .... 16
   Acknowledgments  ............................................ 21
2  Embryonic Deficits of Quantitative Analysis Systems ......... 23
   2.1  Concepts on the Concept of Determinacy ................. 27
   2.2  Randomness and Quantitative Comparability .............. 31
        2.2.1  Some Background Information ..................... 31
        2.2.2  The Problem of Randomness ....................... 32
        2.2.3  Random Walk and Denial of Randomness ............ 34
        2.2.4  Sample Size and Stable "Roving" ................. 37
        2.2.5  Digitization of Irregular Information:
               A Process Physics Principle and End of
               Quantitative Comparability ...................... 38
               2.2.5.1  Digital Structurization of Irregular
                        Humidity Information and Forecast of
                        Torrential Rains ....................... 38
               2.2.5.2  End of Quantitative Comparability ...... 41
   2.3  Equations of Dynamics and Complexity ................... 45
        2.3.1  Well-Posed Transformations of Systems of
               Nonadiabatic Equations .......................... 49
        2.3.2  Characteristic Equations and Eigenvalues ........ 52
               2.3.2.1  The Case with Heat Insulation .......... 55
               2.3.2.2  The Case without Heat Insulation ....... 58
        2.3.3  Transformation between a Phase Trajectory
               Equation and a Phase Trajectory of a Center
               Point ........................................... 61
   Acknowledgments ............................................. 68
3  Attributes and Problems of Numbers and Their Morphological
   Transformations ............................................. 69
   3.1  Incompleteness of Quantities ........................... 76
        3.1.1  Indeterminacy of Quantities Themselves .......... 80
        3.1.2  Artificiality of Quantities ..................... 80
        3.1.3  The Problem of Computational Inaccuracy of
               Quasi-Equal Quantities .......................... 82
        3.1.4  Regularization and Large Probabilitization of
               Quantitative Variables .......................... 84
        3.1.5  The Problem of Nonisomorphic Equal Quantities ... 87
        3.1.6  The Problem of Nondimensionalization ............ 89
   3.2  Folding and Sharp Turning in Mathematical Models ....... 93
        3.2.1  Indeterminacy in Mathematical Descriptions of
               Linear Reciprocating Points and Practical
               Significance of Corresponding Figurative
               Comparability ................................... 93
        3.2.2  Transformation of the Shapes and Quantities of
               Sharp Turning ................................... 95
   3.3  Blown-Ups of Quadratic Nonlinear Models and Dynamic
        Spatial Transformations ................................ 96
        3.3.1  The Implicit Transformation between a Circle
               and a Tangent Line .............................. 99
        3.3.2  The Implicit Transformation between a Circle
               and a Secant Line ............................... 99
               3.3.2.1  Movement on the Minor Arch ............ 100
               3.3.2.2  Movement on the Major Arch ............ 100
               3.3.3.1  Implicit Transformation between
                        a Circle and a Disjoint Line .......... 101
   3.4  The Dynamic Implicit Transformation of the Riemann
        Ball .................................................. 102
   3.5  Whole Evolution of Bifurcation Mathematical Models
        and Nonlinear Elasticity Models ....................... 104
        3.5.1  Standard Bifurcation ........................... 104
        3.5.2  The Standard Bifurcation Model of Saddle,
               Node Points .................................... 105
        3.5.3  The Standard Hofe Bifurcation Model ............ 105
        3.5.4  Nonlinear Elasticity Models .................... 106
   3.6  Eight Theorems on Mathematical Properties of
        Nonlinearity .......................................... 108
        3.6.1  Fundamental Characteristics of General
               Nonlinear Equations ............................ 108
               3.6.1.1  Second-Degree Polynomials ............. 108
        3.6.2  Eight Theorems about Third- and Second-Degree
               Nonlinear Models ............................... 112
               3.6.2.1  The Third-Order Nonlinear Model ....... 112
               3.6.2.2  Second-Order Nonlinear Models ......... 116
               3.6.2.3  The Nonlinear Problem of nth-Degree
                        Polynomial and Theorem 8 .............. 118
        3.6.3  Some Explanations .............................. 121
   3.7  Conclusions ........................................... 122
   Acknowledgments ............................................ 123
4  Achievements and Problems of the Dynamic System of Wave
   Motions .................................................... 125
   4.1  The Classical Vibration and Wave Motion System ........ 128
   4.2  Mathematical Waves and Related Problems ............... 142
        4.2.1  Transformation between Mathematical
               Hyperbolic Wave Motions and Nonlinear Flows .... 143
               4.2.1.1  Nonlinear One-Dimensional Flows and
                        Their Transitional Changes ............ 143
               4.2.1.2  Nonlinear Two-Dimensional Flows and
                        Their Transitional Changes ............ 148
        4.2.2  Mathematical Dispersive Wave Motions ........... 151
        4.2.3  The General Dispersive Relationship ............ 155
   4.3  Linearization or Weak-Linearization of Nonlinear
        Equations ............................................. 160
        4.3.1  Rossby Equation and Theory of Rossby Waves of
               Fluid Mechanics ................................ 160
               4.3.1.1  The Fundamental Characteristics of
                        Spinning Fluids ....................... 160
        4.3.2  Linearization of the Euler Equation and
               Problems with Rossby Waves ..................... 163
               4.3.2.1  Fundamental Characteristics of
                        Spinning Fluids ....................... 163
               4.3.2.2  The Rossby Equation and the Theory
                        of Rossby Waves ....................... 167
   4.4  Nondimensionalization of the Two-Dimensional
        Navier—Stokes—Coriolis Equation and the Problem of
        Solving the Rossby Equation ........................... 175
        4.4.1  The Nondimensionalization of the
               Two-Dimensional Navier—Stokes—Coriolis
               Equation ....................................... 175
        4.4.2  Problems with Nondimensionalization ............ 177
   4.5  The Problem of Integrability of the KdV and Burgers'
        Equations ............................................. 188
        4.5.1  The Modeling Problem of the KdV Equation ....... 189
        4.5.2  The Problem of Solving the KdV Equation ........ 195
               4.5.2.1  The Generality of the Solution of
                        the KdV Equation ...................... 195
               4.5.2.2  Backlind Transformation and the
                        Problem of Solving the KdV Equation ... 198
               4.5.2.3  Direct Integration and the Solitary
                        Waves of the KdV Equation ............. 199
        4.5.3  Mathematical Properties of the KdV Equation
               and Its Conservation Laws of Energy ............ 200
               4.5.3.1  Representation of Conservation Laws
                        of Energy in Modern Science ........... 201
               4.5.3.2  The KdV Equation and Its
                        Conservation Laws ..................... 202
        4.5.4  Mathematical Properties and Problems of
               Physics of the Conservation Laws of the KdV
               Equation ....................................... 207
               4.5.4.1  Mathematical Properties of the
                        Conservation Laws of the KdV
                        Equation .............................. 208
               4.5.4.2  The Problems of Physics Regarding
                        the KdV Equation ...................... 209
        4.5.5  General Properties and Integrability of the
               Burgers' Equation .............................. 210
               4.5.5.1  The General Properties of the
                        Burgers' Equation ..................... 210
               4.5.5.2  Integrability of the Burgers'
                        Equation .............................. 214
   4.6  Summary ............................................... 216
   Acknowledgments ............................................ 219
5  The Circulation Theorem and Generalization of the Mystery
   of Nonlinearity ............................................ 221
   5.1  Bjerknes's Circulation Theorem ........................ 227
   5.2  Generalized Meaning of Nonlinearity ................... 231
        5.2.1  The Universal Gravitational Effects of the
               Circulation Theorem ............................ 231
        5.2.2  Gravitational Effects of the Equation of
               Fluid Movement ................................. 232
        5.2.3  The Problem of Terrain and Nonlinearity ........ 233
               5.2.3.1  The Topographic Coordinate System ..... 233
               5.2.3.2  The Nonlinear Effect of Terrains ...... 235
   5.3  Mystery of Nonlinearity ............................... 238
   5.4  Einstein's General Relativity Theory and the Problem
        of Gravitational Waves ................................ 244
        5.4.1  The Law of Governance of the Slaving Energy
               of the Newtonian First Push and the
               Mass—Energy Formula of Mutual Reactions ........ 245
               5.4.1.1  The Law of Governance of the Slaving
                        Energy of the Newtonian First Push .... 245
               5.4.1.2  Mutual Reactions and Einstein's
                        Mass-Energy Formula ................... 247
        5.4.2  General Relativity Theory and Problems with
               Irrotational Curvature Spaces .................. 248
        5.4.3  Problems with Energy-Momentum Tensors .......... 249
        5.4.4  Irrotational Kinetic Energy and Problems with
               Energy Transformations ......................... 249
        5.4.5  Irrotational Riemann Geometry and the Problem
               of Linearization ............................... 251
        5.4.6  Rotationality and Universal Gravitation ........ 255
   5.5  Probabilistic Waves of the Schrödinger Equation and
        Transmutation of High-Speed Flows ..................... 258
        5.5.1  Flow-Wave Duality of Microscopic Material
               Flows and Quantumization ....................... 259
        5.5.2  Nonprobabilistic Annotation of Uneven Wave
               Functions ...................................... 261
        5.5.3  Non-Initial-Value Transformation of Energy
               and Momentum and Transmutation of High-Speed
               Flows .......................................... 267
               5.5.3.1  The Problem of the Classical
                        Low-Speed Flows of Particles .......... 267
               5.5.3.2  High-Speed Flows of Particles of
                        Relativity Theory ..................... 268
   5.6  Numerical Experiments on Probabilistic Waves and
        Torsion of Quantum Effects ............................ 271
        5.6.1  The Fundamental Equation ....................... 272
               5.6.1.1  The Original Schrodinger Equation ..... 272
               5.6.1.2  An Altered But Equivalent
                        Schrodinger Equation .................. 272
               5.6.1.3  The Difference Equation of the
                        Altered Schrodinger Equation .......... 273
        5.6.2  The Numerical Experiments ...................... 275
               5.6.2.1  The Function of the Quantum Effects ... 275
               5.6.2.2  The Combined Impact of the Intensity
                        Pushing of Potential Field and
                        Quantum Effects ....................... 275
               5.6.2.3  Numerical Experiments on the Impact
                        of Quantum Effects .................... 276
               5.6.2.4  Pushing of Potential Field Intensity
                        and Combined Quantum Effects .......... 279
               5.6.2.5  Numerical Experiments with Changing
                        Unit Volume Density ................... 284
   5.7  Summary ............................................... 288
   Acknowledgments ............................................ 291
6  Nonlinear Computations and Experiments ..................... 293
   6.1  Mathematical Properties and Numerical Computability
        of Nonlinearity ....................................... 298
        6.1.1  Computational Instability of Nonlinearity ...... 299
        6.1.2  Errors of Initial Values ....................... 300
        6.1.3  Infinitesimal Difference of Large Quantities ... 301
   6.2  Computational Stability Analysis of Nonconservative
        and Conservative Schemes of Nonlinear Fluid
        Equations ............................................. 303
        6.2.1  Desired Quantitative Stability ................. 304
        6.2.2  Energy Conservation and Quantitative Growth .... 305
   6.3  The Form of Computational Stability of the
        Conservative Scheme ................................... 307
   6.4  Principal Problems in the Quantitative Computations
        of Harmonic Wave Analysis of Spectral Expansions ...... 313
        6.4.1  The Basic Computational Formula ................ 314
        6.4.2  Numerical Experiments .......................... 314
               6.4.2.1  Quasi-Equal Quantities ................ 315
               6.4.2.2  Invariant Initial Value and
                        Parameters with Adjusted Time Steps ... 315
               6.4.2.3  Impacts of the Initial Value and
                        Parameters ............................ 317
   6.5  Lorenz's Chaos Doctrine and Related Computational
        Schemes ............................................... 320
        6.5.1  Problems with Fundamental Concepts ............. 320
        6.5.2  Problems with Lorenz's Model ................... 322
        6.5.3  Computational Schemes and Lorenz's Chaos ....... 331
               6.5.3.1  The Results of Integration with
                        Relatively Small Time Steps Using
                        a Nonsmoothing Scheme ................. 332
               6.5.3.2  The Computational Results with
                        Increased Time Steps .................. 339
               6.5.3.3  The Computational Results with
                        Negative Initial Values ............... 342
               6.5.3.4  The Computational Results with an
                        Adjusted Parameter .................... 343
               6.5.3.5  Varying Parameter r ................... 344
               6.5.3.6  Varying Parameter σ ................... 344
               6.5.3.7  The Truncated Spectral Energy Analysis
                        of Lorenz's Model ..................... 345
               6.5.3.8  Discussions on the Phenomenon of
                        Lorenz's Chaos ........................ 347
   Acknowledgments ............................................ 348
7  Evolution Science .......................................... 349
   7.1  Specifics of the Concept of Noninertial Systems ....... 351
        7.1.1  Dualism, Materials, Attributes of Materials,
               and the Concept of Noninertial Systems ......... 351
        7.1.2  Quantitative Formality and Variability of
               Events - Existence and Evolution ............... 353
        7.1.3  Rotational Movements and Material Evolutions ... 359
   7.2  What Is Time? ......................................... 362
        7.2.1  The Problem .................................... 362
        7.2.2  About the Concept of Time ...................... 364
               7.2.2.1  Time in China ......................... 365
               7.2.2.2  Time in the West ...................... 366
        7.2.3  The Concept of Time ............................ 368
   7.3  Stirring Motion and Stirring Energy ................... 372
        7.3.1  Rotation and the Problem of Stirring Energy .... 373
        7.3.2  Conservation of Stirring Energy and Three-
               Ringed Energy Transformation ................... 375
        7.3.3  Conservation of Stirring Energy, Process of
               Energy Transformation, and Nonconservation of
               Stirring Energy and Evolution .................. 379
        7.3.4  Conservability of Stirring Energy and
               Physical Meaning of Energy Transformation ...... 381
   7.4  Physical Quantities, Parametric Dimension, and
        Variable Events ....................................... 386
        7.4.1  The Physics of Physical Quantities ............. 386
        7.4.2  The Physics of Physical Quantities and
               Nonquantification of Events .................... 390
               7.4.2.1  Problems with the Physics of
                        Physical Quantities ................... 390
               7.4.2.2  Nonquantification of Variable
                        Events ................................ 392
        7.4.3  Material Dimensions and Problems with
               Quantitative Parametric Dimensions ............. 398
   Acknowledgments ............................................ 401
8  Irregular Information and Regional Digitization ............ 403
   8.1  Digitization of Region-Specific Information and
        Prediction of Disastrous Weathers ..................... 412
        8.1.1  Basic Logic Used in the Design of
               Digitization of Regional Disastrous Weather
               Conditions ..................................... 413
               8.1.1.1  Choice of Heat Analysis ............... 413
               8.1.1.2  Order of Information and the
                        Reversed Order Structure .............. 414
               8.1.1.3  The V-3θ Graph of Digitized Regional
                        Information and Explanations .......... 416
   8.2  The Digital Design and Functions of the V-3θ Graphs ... 424
   8.3  Structural Characteristics of Major Disastrous
        Weathers .............................................. 432
        8.3.1  Severe Convective Weathers ..................... 432
               8.3.1.1  Hailstone Disastrous Weathers ......... 433
        8.3.2  Local Severe Rainfalls and Thundershowers ...... 437
               8.3.2.1  Local Severe Rainfalls ................ 437
               8.3.2.2  Thundershowers ........................ 439
        8.3.3  Predicting the Amount of Rainfalls ............. 441
               8.3.3.1  Predicting the Amounts of General
                        Rainfalls ............................. 443
               8.3.3.2  Predicting the Precipitations of
                        Torrential Rains ...................... 445
               8.3.3.3  Strong Winds and Sand-Dust Storms ..... 447
               8.3.3.4  High-Temperature Weathers ............. 449
               8.3.3.5  Dense Fog Weathers .................... 451
   8.4  The Problem of Mid- and Long-Term Forecasts ........... 453
        8.4.1  Analysis and Forecast of the High-Temperature
               Drought of Summer 2006 ......................... 454
               8.4.1.1  Layers of East Winds and Subtropical
                        High Pressures ........................ 456
        8.4.2  The January 2008 Snow-Ice Disaster
               Experienced in Southern China .................. 469
               8.4.2.1  Some Explanations ..................... 469
               8.4.2.2  Key Points for Forecasting the 2008
                        Snow—Ice Disaster ..................... 469
   8.5  Examples of Case Studies .............................. 478
        8.5.1  The Windstorm in the Bay of Bengal on May 3,
               2008 ........................................... 478
               8.5.1.2  The Problem of Prediction ............. 481
        8.5.2  Changes in Atmospheric Structures for the
              Sichuan Earthquake on May 12, 2008 .............. 483
               8.5.2.1  Changes in Atmospheric Structures
                        before the Earthquake ................. 484
               8.5.2.2  Severely Instable Atmospheric
                        Structures and Characteristics of
                        the Atmospheric Structures along the
Edge of the Epicenter  486
               8.5.2.3  Aftershock Rainfalls and Weakening
                        of Instable Energies .................. 487
               8.5.2.4  Some Simplified Explanations .......... 494
   Acknowledgments ............................................ 495
9 Digital Transformation of Automatically Recorded
  Information ................................................. 497
   9.1  Some Briefings ........................................ 498
        9.1.1  Quantification of Events and the Problem of
               Digitization ................................... 499
        9.1.2  Variable Events and Time ....................... 501
   9.2  Digitization of Automatically Recorded Information
        of Disastrous Weathers ................................ 502
        9.2.1  Digital Transformation of Automatically
               Recorded Information on Locations of
               Torrential Rains ............................... 504
               9.2.1.1  Case Studies of Informational
                        Digitization .......................... 507
               9.2.1.2  Digital Transformation of the
                        Information of Rainfall Locations ..... 507
               9.2.1.3  Digitalized Comparison between the
                        Humidity Evolutional Processes of
                        the Chengdu and Longquan Stations ..... 509
        9.2.2  Digitalized Information and Applications in
               the Forecasting of Thunderstorms ............... 515
               9.2.2.1  The V-36 Graphic Characteristics of
                        Strong Convective Thunderstorm
                        Weathers .............................. 516
               9.2.2.2  Digital Transformation of
                        Automatically Recorded Time Series
                        Information of Humidity for
                        Predicting Rainfall Locations ......... 521
        9.2.3  Digital Forecasts for the Locations of Fogs
               and Hazes ...................................... 522
               9.2.3.1  About the Weather Conditions of the
                        Case Study ............................ 525
               9.2.3.2  Digital Transformation of
                        Automatically Recorded Information
                        and Forecast of Locations ............. 527
   9.3  Examples of Digitizing Seismological Oscillating
        Information and Prediction of Earthquakes ............. 545
        9.3.1  Digitization Characteristics of Geomagnetic
               Information .................................... 545
        9.3.2  Digitization Characteristics of the
               Information of Normal Conditions ............... 548
        9.3.3  Digitization Characteristics of Abnormal
               Conditions ..................................... 548
        9.3.4  Analysis of Disastrous Events .................. 552
               9.3.4.1  Relationship between Abnormality of
                        Information Digitization and
                        Earthquakes ........................... 552
               9.3.4.2  Structural Abnormality in
                        Geomagnetic Readings and Several
                        Kinds of Disasters .................... 554
        9.3.5  Test with the Earthquakes of 2005 (as of
               November 30,2005) .............................. 554
               9.3.5.1  The Data Collection ................... 554
               9.3.5.2  Tests of Actual Forecasts (as of the
                        End of November 2005) ................. 556

Acknowledgments ............................................... 562

Afterword ..................................................... 563

References .................................................... 571

Index ......................................................... 577


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:22 2019. Размер: 29,532 bytes.
Посещение N 2051 c 28.09.2010