Integration of GIS and remote sensing (Chichester, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIntegration of GIS and remote sensing / ed. by V.Mesev. - Chichester: Wiley, 2007. - xvi, 296 p.: ill., maps. - (Mastering GIS: technology, applications and management). - Incl. bibl. ref. - Ind.: p.291-296. - ISBN 978-0-470-86409-8; ISBN 978-0-470-86410-4
 

Место хранения: 034 | Институт леса СО РАН | Красноярск | Библиотека

Оглавление / Contents
 
Series Foreword ................................................ xi
Preface ...................................................... xiii
List of Contributors ........................................... xv
1  GIS and remote sensing integration: in search of a 
   definition ................................................... 1
   Victor Mesev and Alexandra Watrath
   1.1  Introduction ............................................ 1
   1.2  In search of a definition ............................... 2
        1.2.1  Evolutionary integration ......................... 4
        1.2.2  Methodological integration ....................... 5
   1.3  Outline of the book ..................................... 8
   1.4  Conclusions ............................................ 13
2  Integration taxonomy and uncertainty ........................ 17
   Manfred Ehlers
   2.1  Introduction ........................................... 17
   2.2  Taxonomy issues ........................................ 19
        2.2.1  Taxonomy of GIS operators ....................... 19
        2.2.2  Taxonomy of image analysis operators in remote
               sensing ......................................... 20
        2.2.3  An integrated taxonomy .......................... 20
   2.3  Uncertainty issues ..................................... 22
        2.3.1  Uncertainty in geographic information ........... 22
        2.3.2  Uncertainty in the integration of GIS and
               remote sensing .................................. 23
   2.4  Modelling positional and thematic error in the
        integration of remote sensing and GIS .................. 27
        2.4.1  Positional and thematic uncertainties ........... 27
        2.4.2  Problem formulation ............................. 28
        2.4.3  Modelling positional uncertainty ................ 29
        2.4.4  Thematic uncertainties of a classified image .... 34
        2.4.5  Modelling the combined positional and thematic
               uncertainties ................................... 35
   2.5  Conclusions ............................................ 38
3  Data fusion related to GIS and remote sensing ............... 43
   Paolo Gamba and Fabio Delt'Acqua
   3.1  Introduction ........................................... 43
   3.2  Why do we need GIS-remote sensing fusion? .............. 43
        3.2.1  Remote sensing output to GIS .................... 44
        3.2.2  GIS input to remote sensing interpretation
               algorithms ...................................... 45
        3.2.3  Example: urban planning check and update ........ 46
   3.3  Problems in GIS-remote sensing data fusion ............. 47
        3.3.1  Lack of consistent standards .................... 48
        3.3.2  Inconsistency of GIS-remote sensing accuracy,
               legends and scales .............................. 49
        3.3.3  Different nature of the two sources ............. 51
        3.3.4  Need for information rather than data fusion .... 53
        3.3.5  Example: population mapping through remote
               sensing ......................................... 54
   3.4  Present and future solutions ........................... 55
        3.4.1  Multiscale analysis ............................. 55
        3.4.2  Fusion techniques ............................... 57
   3.5  Conclusions ............................................ 60
        3.5.1   Integration of remote sensing and GIS into
                a change detection module ...................... 61
4  The importance of scale in remote sensing and GIS and its
   implications for data integration ........................... 69
   Peter M. Atkinson
   4.1  Introduction ........................................... 69
   4.2  Data models and scales of measurement .................. 70
        4.2.1  Raster imagery .................................. 70
        4.2.2  Vector data ..................................... 74
   4.3  Scales of spatial variation ............................ 75
        4.3.1  Spatial variation in raster data ................ 75
        4.3.2  Scales of variation in vector data .............. 79
        4.3.3  Processes in the environment .................... 79
   4.4  Remote sensing and GIS data integration ................ 80
        4.4.1  Overlay and regression .......................... 80
        4.4.2  Remote sensing classification of land cover ..... 84
   4.5  Conclusion ............................................. 87
5  Of patterns and processes: spatial metrics and
   geostatistics in urban analysis ............................. 93
   XiaoHang Liu and Martin Herold
   5.1  Introduction ........................................... 93
   5.2  Geostatistics .......................................... 95
   5.3  Spatial metrics ........................................ 96
   5.4  Examples .............................................. 100
        5.4.1  Data preparation ............................... 100
        5.4.2  Linkage from land cover to Land use ............ 103
        5.4.3  Linking urban form to population density ....... 107
        5.4.5  Linking characteristics of spatial patterns
               and processes .................................. 109
   5.5  Conclusion ............................................ 112
6  Using remote sensing and GIS integration to identify
   spatial characteristics of sprawl at the building-unit
   level ...................................................... 117
   John Hasse
   6.1  Introduction .......................................... 117
   6.2  Sprawl in the remote sensing and GIS literature ....... 118
        6.2.1  Definitions of sprawl .......................... 119
        6.2.2  Spatial characteristics of sprawl at
               a metropolitan level ........................... 122
        6.2.3  Spatial characteristics of sprawl at
               a submetropolitan level ........................ 125
   6.3  Integrating remote sensing and GIS for sprawl
        research .............................................. 127
   6.4  Spatial characteristics of sprawl at a building-unit
        level ................................................. 133
   6.5  A practical building-unit level model for analysing
        sprawl ................................................ 135
        6.5.1  Urban density .................................. 138
        6.5.2  Leapfrog ....................................... 138
        6.5.3  Segregated land use ............................ 140
        6.5.4  Highway strip .................................. 141
        6.5.5  Community node inaccessibility ................. 141
        6.5.6  Normalizing municipal sprawl indicator
               measures ....................................... 142
   6.6  Future benefits of integrating remote sensing and
        GIS in sprawl research ................................ 143
7  Remote sensing applications in urban socio-economic
   analysis ................................................... 149
   Changshan Wu
   7.1  Introduction .......................................... 149
   7.2  Principles of urban socio-economic studies using
        remote sensing technologies ........................... 150
   7.3  Socio-economic information estimation ................. 153
        7.3.1  Population estimation .......................... 153
        7.3.2  Employment estimation .......................... 155
        7.3.3  GDP estimation ................................. 155
        7.3.4  Electrical power consumption estimation ........ 156
   7.4  Socio-economic activity modelling ..................... 157
        7.4.1  Population interpolation ....................... 157
        7.4.2  Socio-economic index generation ................ 158
        7.4.3  Understanding and modelling socio-economic
               phenomena ...................................... 159
   7.5  Advantages and limitations of remote sensing
        technologies in socioeconomic applications ............ 167
        7.5.1  Socio-economic information estimation .......... 167
        7.5.2  Socio-economic information modelling ........... 168
   7.6  Conclusions ........................................... 168
8  Integrating remote sensing, GIS and spatial modelling for
   sustainable urban growth management ........................ 173
   Xiaojun Yang
   8.1  Introduction .......................................... 173
   8.2  Research methodology .................................. 175
        8.2.1  Study area ..................................... 176
        8.2.2  Data acquisition and collection ................ 176
        8.2.3  Satellite image processing ..................... 178
        8.2.4  Change analysis ................................ 180
        8.2.5  Spatial statistical analysis ................... 181
        8.2.6  Dynamic spatial modelling ...................... 182
   8.3  Results and discussion ................................ 184
        8.3.1  Urban growth ................................... 184
        8.3.2  Driving force .................................. 187
        8.3.3  Future growth scenario simulation .............. 191
   8.4  Conclusions ........................................... 193
9  An integrative GIS and remote sensing model for - place-
   based urban vulnerability analysis ......................... 199
   Torek Rashed, John Weeks, Helen Coudelis and Martin
   Herold
   9.1  Introduction .......................................... 199
   9.2  Analysis of urban vulnerability: what is it all
        about? ................................................ 201
   9.3  A conceptual framework for place-based analysis of
        urban vulnerability ................................... 202
   9.4  Integrating GIS and remote sensing into
        vulnerability analysis ................................ 205
   9.5  A GIS-remote sensing place-based model for urban
        vulnerability analysis ................................ 206
   9.6  An illustrative example of model application .......... 208
        9.6.1  Study area ..................................... 209
        9.6.2  Data ........................................... 209
        9.6.3  Identifying vulnerability hot spots ............ 210
        9.6.4  Deriving remote sensing measures of urban
               morphology in Los Angeles ...................... 212
        9.6.5  Deriving an index of wealth for Los Angeles
               County ......................................... 216
        9.6.6  Spatial filtering of variables ................. 217
        9.6.7  Generating place-based knowledge of urban
               vulnerability in Los Angeles ................... 218
        9.6.8  To what extent do model results conform to
               universal knowledge of vulnerability? .......... 222
   9.7  Conclusions ........................................... 224
10 Using GIS and remote sensing for ecological mapping and
   monitoring ................................................. 233
   Jennifer A. Miller and John Rogan
   10.1 Introduction .......................................... 233
   10.2 Integration of GIS and remote sensing in ecological
        research .............................................. 237
   10.3 GIS data used in ecological applications .............. 237
        10.3.1 Gradient analysis .............................. 238
        10.3.2 Climate ........................................ 240
        10.3.3 Topography ..................................... 241
   10.4 Remotely sensed data for ecological applications ...... 242
        10.4.1 Spectral enhancements .......................... 243
        10.4.2 Land cover ..................................... 244
        10.4.3 Habitat structure .............................. 245
        10.4.4 Вiophysical processes .......................... 246
   10.5 Species distribution models ........................... 247
        10.5.1 Biodiversity mapping ........................... 251
   10.6 Change detection ...................................... 253
        10.6.1 Case study: using GIS and remote sensing for
               large-area change detection and efficient map
               updating ....................................... 253
   10.7 Conclusions ........................................... 260
11 Remote sensing and GIS for ephemeral wetland monitoring
   and sustainability in southern Mauritania .................. 269
   Тага Shine and Victor Mesev
   11.1 Introduction .......................................... 269
        11.1.1 Ephemeral wetlands ............................. 269
        11.1.2 Remote sensing of ephemeral wetlands ........... 270
   11.2 Ephemeral wetlands in Mauritania ...................... 272
        11.2.1 Data and processing ............................ 274
        11.2.2 Results ........................................ 279
        11.2.3 Implications for management .................... 283
   11.3  Conclusions .......................................... 284

Index ......................................................... 291


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:20 2019. Размер: 17,113 bytes.
Посещение N 2216 c 28.09.2010