Humphreys J.E. Modular representations of finite groups of Lie type (Cambridge; New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHumphreys J.E. Modular representations of finite groups of Lie type. - Cambridge; New York: Cambridge University Press, 2006. - xv, 233 p.: ill. - (London Mathematical Society lecture note series; 326). - Bibliogr.: p.213-228. - Ind.: p.231-233. - ISBN-10 0-521-67454-9; ISBN-13 978-0-521-67454-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1  Finite Groups of Lie Type .................................... 1
   1.1   Algebraic Groups over Finite Fields .................... 1
   1.2   Classification Over Finite Fields ...................... 2
   1.3   Frobenius Maps ......................................... 3
   1.4   Lang Maps .............................................. 4
   1.5   Chevalley Groups and Twisted Groups .................... 5
   1.6   Example: SL(3, q) and SU(3, q) ......................... 5
   1.7   Groups With a BN-Pair .................................. 7
   1.8   Notational Conventions ................................. 8
2  Simple Modules ............................................... 9
   2.1   Representations and Formal Characters .................. 9
   2.2   Simple Modules for Algebraic Groups ................... 10
   2.3   Construction of Modules ............................... 11
   2.4   Contravariant Forms ................................... 12
   2.5   Representations of Frobenius Kernels .................. 13
   2.6   Invariants in the Function Algebra .................... 14
   2.7   Steinberg's Tensor Product Theorem .................... 15
   2.8   Example: SL(2, K) ..................................... 16
   2.9   Brauer Theory ......................................... 16
   2.10  Counting Semisimple Classes ........................... 16
   2.11  Restriction to Finite Subgroups ....................... 17
   2.12  Proof of Irreducibility ............................... 17
   2.13  Proof of Distinctness: Chevalley Groups ............... 18
   2.14  Proof of Distinctness: Twisted Groups ................. 19
   2.15  Action of a Sylow p-Subgroup .......................... 20
3  Weyl Modules and Lusztig's Conjecture ....................... 21
   3.1   Weyl Modules .......................................... 21
   3.2   Restricted Highest Weights ............................ 22
   3.3   Cohomology of Line Bundles ............................ 23
   3.4   The Affine Weyl Group ................................. 24
   3.5   Alcoves ............................................... 25
   3.6   Linkage and Translation ............................... 26
   3.7   Steinberg Modules ..................................... 26
   3.8   Contravariant Form on a Weyl Module ................... 27
   3.9   Jantzen Filtration and Sum Formula .................... 28
   3.10  Generic Behavior of Weyl Modules ...................... 29
   3.11  Lusztig's Conjecture .................................. 30
   3.12  Evidence for the Conjecture ........................... 31
4  Computation of Weight Multiplicities ........................ 33
   4.1   Weight Spaces in Verma Modules ........................ 33
   4.2   Weight Spaces in Characteristic p ..................... 34
   4.3   An Easy Example: SL(2, K) ............................. 35
   4.4   Computational Algorithms .............................. 35
   4.5   Fundamental Modules for Symplectic Groups ............. 37
   4.6   Small Weights and Small Characteristics ............... 38
   4.7   Small Representations ................................. 38
5  Other Aspects of Simple Modules ............................. 41
   5.1   Restriction of Frobenius Maps ......................... 41
   5.2   Splitting Fields ...................................... 42
   5.3   Special Isogenies ..................................... 43
   5.4   Steinberg's Refined Factorization ..................... 44
   5.5   Brauer Characters and Grothendieck Rings .............. 45
   5.6   Formal Characters and Brauer Characters ............... 46
   5.7   Rewriting Formal Sums ................................. 48
   5.8   Restricting Highest Weight Modules to Finite 
         Subgroups ............................................. 48
   5.9   Restriction of Weyl Modules ........................... 49
   5.10  Restriction of Simple Modules to Levi Subgroups ....... 50
   5.11  Restriction to Elementary Abelian p-Subgroups ......... 51
6  Tensor Products ............................................. 53
   6.1   Tensor Products of Simple Modules ..................... 53
   6.2   Multiplicities ........................................ 54
   6.3   Simple Tensor Products ................................ 55
   6.4   Semisimple Tensor Products ............................ 56
   6.5   Dimensions Divisible by p ............................. 56
   6.6   Formal Characters and Multiplicities .................. 57
   6.7   Twisting by the Frobenius ............................. 57
   6.8   Rewriting Multiplicities .............................. 58
   6.9   Multiplicity of the Steinberg Module .................. 59
7  BN-Pairs and Induced Modules ................................ 61
   7.1   Weights for Groups with a Split BN-Pair ............... 61
   7.2   Principal Series and Intertwining Operators ........... 63
   7.3   Examples .............................................. 64
   7.4   Summands of Principal Series Modules .................. 64
   7.5   Homology Representations .............................. 65
   7.6   Comparison with Principal Series ...................... 66
8  Blocks ...................................................... 67
   8.1   Blocks of a Group Algebra ............................. 67
   8.2   The Defect of a Block ................................. 68
   8.3   Groups of Lie Type .................................... 68
   8.4   Defect Groups ......................................... 69
   8.5   Defect Groups for Groups of Lie Type .................. 70
   8.6   Steps in the Proof .................................... 70
   8.7   The BN-Pair Setting ................................... 72
   8.8   Vertices of Simple Modules ............................ 72
   8.9   Representation Type of a Block ........................ 73
9  Projective Modules .......................................... 75
   9.1   Projective Modules for Finite Groups .................. 75
   9.2   Groups of Lie Type .................................... 76
   9.3   The Steinberg Module .................................. 77
   9.4   Tensoring with the Steinberg Module ................... 78
   9.5   Brauer Characters and Orthogonality Relations ......... 79
   9.6   Brauer Characters of PIMs ............................. 79
   9.7   A Lower Bound for Dimensions of PIMs .................. 80
   9.8   Projective Modules for SL(2, p) ....................... 81
   9.9   Brauer Trees for SL(2, p) ............................. 83
   9.10  Indecomposable Modules for SL(2, p) ................... 83
   9.11  Dimensions of PIMs in Low Ranks ....................... 84
10 Comparison with Frobenius Kernels ........................... 87
   10.1  Injective Modules for Frobenius Kernels ............... 87
   10.2  Torus Action on Gr -Modules ........................... 89
   10.3  Formal Character of Qr(X) ............................. 90
   10.4  Lifting PIMs to the Algebraic Group ................... 91
   10.5  Some Consequences ..................................... 92
   10.6  Tensoring with the Steinberg Module ................... 93
   10.7  Small PIMs ............................................ 94
   10.8  The Category of G,T-Modules ........................... 94
   10.9  Rewriting Multiplicities .............................. 95
   10.10 Brauer Characters ..................................... 96
   10.11 Statement of the Main Theorem ......................... 96
   10.12 Proof of the Main Theorem ............................. 97
   10.13 Letting r Grow ........................................ 97
   10.14 Some Comparisons in Low Ranks ......................... 99
11 Cartan Invariants .......................................... 101
   11.1  Cartan Invariants for Finite Groups .................. 101
   11.2  Brauer Characters and Cartan Invariants .............. 102
   11.3  Decomposition Numbers ................................ 102
   11.4  Groups of Lie Type ................................... 103
   11.5  Example: SL(2, p) .................................... 103
   11.6  Example: SL(2, q) .................................... 104
   11.7  Using Standard Character Data to Compute Cartan
         Invariants ........................................... 105
   11.8  Conditions for Genericity ............................ 105
   11.9  Generic Cartan Invariants ............................ 106
   11.10 Growth of Cartan Invariants .......................... 107
   11.11 The First Cartan Invariant ........................... 108
   11.12 Special Cases ........................................ 108
   11.13 Computations of Cartan Matrices ...................... 109
   11.14 Example: SL(3, 3) .................................... 110
   11.15 Example: Sp(4, 3) and Related Groups ................. 111
   11.16 Example: SL(5, 2) .................................... 111
   11.17 Conjectures on Block Invariants ...................... 112
12 Extensions of Simple Modules ............................... 115
   12.1  The Extension Problem ................................ 115
   12.2  Example: SL(2, p) .................................... 116
   12.3  The Optimal Situation ................................ 117
   12.4  Extensions for Algebraic Groups ...................... 118
   12.5  Injectivity Theorem .................................. 119
   12.6  Dimensions of Ext Groups ............................. 120
   12.7  The Generic Case ..................................... 121
   12.8  Truncated Module Categories and Cohomology ........... 121
   12.9  Comparison Theorems .................................. 122
   12.10 Self-Extensions ...................................... 123
   12.11 Special Cases ........................................ 124
   12.12 Semisimplicity Criteria .............................. 127
13 Loewy Series ............................................... 129
   13.1  Loewy Series ......................................... 129
   13.2  Loewy Series for Finite Groups ....................... 130
   13.3  Example: SL(2, p) .................................... 130
   13.4  Minimal Projective Resolutions ....................... 131
   13.5  Example: SL(2, q) .................................... 132
   13.6  The Category fig.4 ...................................... 132
   13.7  Analogies in Characteristic p ........................ 134
   13.8  Frobenius Kernels and Algebraic Groups ............... 134
   13.9  Example: SL(3, K) .................................... 135
   13.10 Principal Series Modules ............................. 136
   13.11 Loewy Series for Chevalley Groups .................... 137
   13.12 Example: SL(3, 2) .................................... 137
   13.13 Example: SL(3, 3) .................................... 138
   13.14 Example: SL(4, 2) .................................... 139
   13.15 Example: SO(5, 3) .................................... 140
14 Cohomology ................................................. 143
   14.1  Cohomology of Finite Groups .......................... 143
   14.2  Finite Groups of Lie Type ............................ 144
   14.3  Cohomology of Algebraic Groups ....................... 145
   14.4  Twisting by Frobenius Maps ........................... 146
   14.5  Rational and Generic Cohomology ...................... 146
   14.6  Discussion of the Proof .............................. 147
   14.7  Example: SL(2, q) .................................... 148
   14.8  Explicit Computations ................................ 149
   14.9  Recent Developments .................................. 150
15 Complexity and Support Varieties ........................... 151
   15.1  Complexity of a Module ............................... 151
   15.3  Support Varieties for Restricted Lie Algebras ........ 153
   15.4  Support Varieties for Groups of Lie Type ............. 154
   15.5  Further Refinements .................................. 155
   15.6  Resolutions and Periodicity .......................... 156
   15.7  Periodic Modules for Groups of Lie Type .............. 156
16 Ordinary and Modular Representations ....................... 159
   16.1  The Decomposition Matrix ............................. 159
   16.2  Brauer Characters .................................... 160
   16.3  Blocks ............................................... 161
   16.4  The Cartan-Brauer Triangle ........................... 161
   16.5  Groups of Lie Type ................................... 162
   16.6  Blocks of Defect Zero: the Steinberg Character ....... 162
   16.7  Cyclic Blocks and Brauer Trees ....................... 163
   16.8  Characters of SL(2,q) ................................ 164
   16.9  The Brauer Tree of SL(2, p) .......................... 165
   16.10 Decomposition Numbers of SL(2, q) .................... 165
   16.11 Character Computations for Lie Families .............. 167
   16.12 Some Explicit Decomposition Matrices ................. 168
   16.13 Special Characters of Sp(2n, q) ...................... 168
   16.14 Irreducibility Modulo p .............................. 169
17 Deligne-Lusztig Characters ................................. 171
   17.1  Reductive Groups and Frobenius Maps .................. 171
   17.2  F-Stable Maximal Tori ................................ 172
   17.3  DL Characters ........................................ 173
   17.4  Basic Properties of DL Characters .................... 174
   17.5  The Decomposition Problem ............................ 175
   17.6  PIMs and DL Characters ............................... 176
   17.7  DL Characters and Weyl Characters .................... 176
   17.8  Generic Decomposition Patterns ....................... 177
   17.9  Twisted groups ....................................... 178
   17.10 Unipotent Characters ................................. 178
   17.11 Semisimple and Regular Characters .................... 179
   17.12 Geometric Conjugacy Classes of Cardinality 2 ......... 181
   17.13 Jantzen Filtration of a Principal Series Module ...... 181
   17.14 Extremal Composition Factors ......................... 182
   17.15 Another Look at the Brauer Tree of SL(2, p) .......... 182
   17.16 The Brauer Complex ................................... 183
   17.17 Dual Formulation ..................................... 184
18 The Groups G2(q) ........................................... 185
   18.1  The Groups ........................................... 185
   18.2  The Affine Weyl Group ................................ 185
   18.3  Weyl Modules and Simple Modules ...................... 186
   18.4  Projective Modules for p = 2, 3, 5 ................... 187
   18.5  Projective Modules for p ≥ 7 ......................... 191
   18.6  Characters of G2{q) .................................. 191
   18.7  Reduction Modulo p ................................... 194
   18.8  Brauer Complex of G2(5) .............................. 195
19 General and Special Linear Groups .......................... 197
   19.1  Representations of GL(n, K) and GL(n,q) .............. 197
   19.2  Action on Symmetric Powers ........................... 198
   19.3  Dickson Invariants ................................... 198
   19.4  Complements .......................................... 199
   19.5  Multiplicity of St in Symmetric Powers ............... 200
   19.6  Other Simple Modules ................................. 200
   19.7  Example: SL(2, p) .................................... 201
   19.8  Periodicity for SL(2, q) ............................. 201
   19.9  Key Lemma ............................................ 202
   19.10 Proof of Periodicity Theorem ......................... 202
   19.11 Brauer Lifting ....................................... 204
20 Suzuki and Ree Groups ...................................... 205
   20.1  Description of the Groups ............................ 205
   20.2  Simple Modules ....................................... 206
   20.3  Projective Modules and Blocks ........................ 208
   20.4  Cartan Invariants of Suzuki Groups ................... 208
   20.5  Cartan Invariants of the Tits Group .................. 209
   20.6  Extensions and Cohomology ............................ 210
   20.7  Ordinary Characters .................................. 210
   20.8  Decomposition Numbers of Suzuki Groups ............... 211

Bibliography Frequently Used Symbols Index


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:20 2019. Размер: 20,448 bytes.
Посещение N 2292 c 28.09.2010