Foreword ........................................................ V
Preface ........................................................ XV
List of Contributors .......................................... XIX
1. Storage of Hydrogen in the Pure Form ......................... 1
Manfred Klell
1.1. Introduction ............................................ 1
1.2. Thermodynamic State and Properties ...................... 1
1.2.1. Variables of State ............................... 2
1.2.2. T-s-Diagram ...................................... 4
1.2.2.1. Joule-Thomson Coefficient ............... 5
1.2.3. Properties ....................................... 5
1.3. Gaseous Storage ......................................... 8
1.3.1. Compression and Expansion ....................... 10
1.3.2. Tank Systems .................................... 12
1.3.3. High Pressure Infrastructure .................... 13
1.4. Liquid Storage ......................................... 15
1.4.1. Liquefaction .................................... 15
1.4.2. Thermodynamic Analysis .......................... 17
1.4.2.1. Pressure Build-Up ...................... 21
1.4.2.2. Boil-Off ............................... 23
1.4.2.3. Cooling and Filling .................... 24
1.4.2.4. Back-Gas ............................... 27
1.4.3. Tank Systems .................................... 28
1.4.4. Distribution Facilities ......................... 30
1.5. Hybrid Storage ......................................... 30
1.5.1. Supercritical Storage ........................... 31
1.5.2. Hydrogen Slush .................................. 32
1.6. Comparison of Energy Densities ......................... 32
1.7. Conclusion ............................................. 35
References ............................................. 36
2. Physisorption in Porous Materials ........................... 39
Barbara Panella and Michael Hirscher
2.1. Introduction ........................................... 39
2.2. Carbon Materials ....................................... 44
2.3. Organic Polymers ....................................... 48
2.4. Zeolites ............................................... 50
2.5. Coordination Polymers .................................. 51
2.6. Conclusions ............................................ 58
References .................................................. 59
3. Clathrate Hydrates .......................................... 63
Alireza Shariati, Sona Raeissi, and Cor J. Peters
3.1. Introduction ........................................... 63
3.2. Clathrate Hydrate Structures ........................... 64
3.3. Hydrogen Clathrate Hydrate ............................. 66
3.4. Kinetic Aspects of Hydrogen Clathrate Hydrate .......... 73
3.5. Modeling of Hydrogen Clathrate Hydrates ................ 74
3.6. Future of Hydrogen Storage ............................. 76
References .................................................. 77
4. Metal Hydrides .............................................. 81
Jacques Huot
4.1. Introduction ........................................... 81
4.2. Elemental Hydrides ..................................... 82
4.2.1. Ionic or Saline Hydrides ........................ 82
4.2.2. Covalent Hydrides ............................... 82
4.2.3. Metallic Hydrides ............................... 83
4.3. Thermodynamics of Metal Hydrides ....................... 83
4.3.1. Introduction .................................... 83
4.3.2. Low Concentration ............................... 85
4.3.3. High Concentration .............................. 86
4.4. Intermetallic Compounds ................................ 88
4.4.1. Thermodynamics .................................. 88
4.4.1.1. Miedema's Model ........................ 89
4.4.1.2. Semi-Empirical Band Structure Model .... 91
4.4.2. Crystal Structure ............................... 92
4.4.3. Electronic Structure ............................ 94
4.5. Practical Considerations ............................... 94
4.5.1. Synthesis ....................................... 95
4.5.2. Activation ...................................... 95
4.5.3. Hysteresis ...................................... 96
4.5.4. Plateau Slope ................................... 97
4.5.5. Reversible Capacity ............................. 98
4.5.6. Hydrogenation Kinetics .......................... 98
4.5.7. Cycle Life ...................................... 99
4.5.8. Decrepitation ................................... 99
4.6. Metal Hydrides Systems ................................ 100
4.6.1. AB5 ............................................ 100
4.6.2. TiFe ........................................... 101
4.6.3. AB2 Laves Phases ............................... 102
4.6.4. BCC Solid Solution ............................. 103
4.7. Nanocrystalline Mg and Mg-Based Alloys................. 104
4.7.1. Hydrogen Sorption Kinetics ..................... 105
4.7.2. Reduction of the Heat of Formation ............. 107
4.7.3. Severe Plastic Deformation Techniques .......... 108
4.8. Conclusion ............................................ 109
4.8.1. Alloys Development ............................. 109
4.8.2. Synthesis ...................................... 110
4.8.3. System Engineering ............................. 110
References ................................................. 110
5. Complex Hydrides ........................................... 117
Claudia Weidenthaler and Michael Felderhoff
5.1. Introduction .......................................... 117
5.2. Complex Borohydrides .................................. 118
5.2.1. Introduction ................................... 118
5.2.2. Stability of Metal Borohydrides ................ 118
5.2.3. Decomposition of Complex Borohydrides .......... 119
5.2.4. Lithium Borohydride, LiBH4 ..................... 120
5.2.4.1. Synthesis and Crystal Structure ....... 120
5.2.4.2. Decomposition of LiBH4 ................ 120
5.2.5. Sodium Borohydride, NaBH4 ...................... 122
5.2.5.1. Synthesis and Crystal Structure ....... 122
5.2.5.2. Decomposition of NaBH4 ................ 122
5.2.6. Potassium Borohydride KBH4 ..................... 122
5.2.7. Beryllium Borohydride Be(BH4)2 ................. 123
5.2.8. Magnesium Borohydride Mg(BH4)2 ................. 123
5.2.8.1. Synthesis and Crystal Structure ....... 123
5.2.8.2. Decomposition ......................... 123
5.2.9. Calcium Borohydride Ca(BH4)2 ................... 124
5.2.9.1. Synthesis and Crystal Structure ....... 124
5.2.9.2. Decomposition ......................... 125
5.2.10.Aluminum Borohydride Al(BH4)3 .................. 126
5.2.10.1.Synthesis and Crystal Structure ....... 126
5.2.10.2.Decomposition ......................... 126
5.2.11.Zinc Borohydride Zn(BH4)2 ....................... 126
5.2.12.NaBH4 as a Hydrogen Storage Material in
Solution ....................................... 126
5.2.12.1.Regeneration of Decomposed NaBH4
in Solution ........................... 128
5.3. Complex Aluminum Hydrides ............................. 128
5.3.1. Introduction ................................... 128
5.3.2. LiAlH4 ......................................... 130
5.3.2.1. Synthesis and Crystal Structure ....... 130
5.3.2.2. Decomposition of LiAlH4 ............... 131
5.3.2.3. Role of Catalysts ..................... 131
5.3.3. Li3AlH6 ........................................ 132
5.3.3.1. Synthesis and Crystal Structure ....... 132
5.3.4. NaAlH4 ......................................... 133
5.3.4.1. Synthesis and Crystal Structure ....... 133
5.3.4.2. Decomposition and Thermodynamics
of NaAlH4 ............................. 133
5.3.4.3. Role of Catalysts ..................... 135
5.3.5. Na3AlH6 ........................................ 138
5.3.5.1. Synthesis and Crystal Structure ....... 138
5.3.6. KAlH4 .......................................... 139
5.3.6.1. Synthesis and Crystal Structure ....... 139
5.3.6.2. Decomposition of KAlH4 ................ 140
5.3.7. Mg(AlH4)2 ...................................... 140
5.3.7.1. Synthesis and Crystal Structure ....... 140
5.3.7.2. Decompositon .......................... 141
5.3.8. Ca(AlH4)2 ...................................... 142
5.3.8.1. Synthesis and Crystal Structure ....... 142
5.3.8.2. Decomposition of Ca(AlH4)2 ............ 143
5.3.9. Na2LiAlH6 ...................................... 144
5.3.10. K2LiAlH6 ...................................... 145
5.3.11. K2NaAlH6 ...................................... 145
5.3.12. LiMg(AlH4)3, LiMgAlH6 ......................... 146
5.3.12.1. Synthesis and Crystal Structure ...... 146
5.3.12.2. Decomposition ........................ 146
5.3.13. Sr2AlH7 ....................................... 146
5.3.14. BaAlH5 ........................................ 147
5.3.14.1. Synthesis and Crystal Structure ...... 147
5.4. Complex Transition Metal Hydrides ..................... 148
5.4.1. Introduction ................................... 148
5.4.2. Properties ..................................... 148
5.4.3. Synthesis ...................................... 149
5.4.4. Examples of Complex Transition Metal
Hydrides ....................................... 150
5.5. Summary ............................................... 150
References ................................................. 151
6. Amides, Imides and Mixtures ................................ 159
Takayuki Ichikawa
6.1. Introduction .......................................... 159
6.2. Hydrogen Storage Properties of Amide and Imide
Systems ............................................... 160
6.2.1. Li-N-H System .................................. 160
6.2.2. Li-Mg-N-H Systems .............................. 161
6.2.3. Other Metal-N-H Systems ........................ 165
6.3. Structural Properties of Amide and Imide .............. 167
6.3.1. Lithium Amide and Imide ........................ 168
6.3.2. Sodium Amide ................................... 171
6.3.3. Magnesium Amide and Imide ...................... 171
6.3.4. Other Amides and Imides ........................ 172
6.4. Prospects of Amide and Imide Systems .................. 173
6.4.1. Kinetic Analysis and Improvement ............... 173
6.4.2. NH3 Amount Desorbed from Metal-N-H Systems ..... 176
6.4.3. Practical Properties ........................... 177
6.5. Proposed Mechanism of the Hydrogen Storage Reaction
in the Metal-N-H Systems .............................. 178
6.5.1. Ammonia-Mediated Model for Hydrogen
Desorption ..................................... 178
6.5.2. Direct Solid-Solid Reaction Model for
Hydrogen Desorption ............................ 180
6.5.3. Hydrogenating Mechanism of the Li-Mg-N-H
System ......................................... 181
6.6. Summary ............................................... 182
References ................................................. 182
7. Tailoring Reaction Enthalpies of Hydrides .................. 187
Martin Dornheim
7.1. Introduction .......................................... 187
7.2. Thermodynamic Limitations of Lightweight Hydrides ..... 189
7.3. Strategies to Alter the Reaction Enthalpies of
Hydrides .............................................. 191
7.3.1. Thermodynamic Tuning of Single Phase Hydrides
by Substitution on the Metal Site .............. 191
7.3.1.1. Lightweight Hydrides Forming Stable
Compounds in the Dehydrogenated
State ................................. 193
7.3.1.2. Lightweight Hydrides with Positive
Heat of Mixing in the Dehydrogenated
State ................................. 196
7.3.2. Thermodynamic Tuning of Single Phase Hydrides
by Substitution on the Hydrogen Sites:
Functional Anion Concept ....................... 199
7.3.3. Multicomponent Hydride Systems ................. 203
7.3.3.1. Mixtures of Hydrides and Reactive
Additives ............................. 203
7.3.3.2. Mixed Hydrides/Reactive Hydride
Composites ............................ 207
7.4. Summary and Conclusion ................................ 210
References ................................................. 211
8. Ammonia Borane and Related Compounds as Hydrogen Source
Materials .................................................. 215
Florian Mertens, Gert Wolf, and Felix Baitalow
8.1. Introduction .......................................... 215
8.2. Materials Description and Characterization ............ 216
8.3. Production ............................................ 219
8.4. Thermally Induced Decomposition of Pure Ammonia
Borane ................................................ 221
8.4.1. Pyrolysis ...................................... 221
8.4.2. Decomposition in Organic Solvents .............. 227
8.4.3. Decomposition of Ammonia Borane in
Heterogeneous Systems .......................... 232
8.5. Hydrolysis of AB ...................................... 233
8.6. Substituted Ammonia Boranes ........................... 235
8.7. Recycling Strategies .................................. 238
8.7.1. Recycling from B-O-Containing Materials ........ 239
8.7.2. Recycling of BNHx-Waste Products ............... 240
8.8. Summary ............................................... 243
References ................................................. 244
9. Aluminum Hydride (Alane) ................................... 249
Ragaiy Zidan
9.1. Introduction .......................................... 249
9.2. Hydrogen Solubility and Diffusivity in Aluminum ....... 250
9.3. Formation and Thermodynamics of Different Phases
of Alane .............................................. 252
9.4. Stability and Formation of Adduct Organo-Aluminum
Hydride Compounds ..................................... 260
9.5. Phases and Structures of Aluminum Hydride ............. 266
9.6. Novel Attempts and Methods for Forming Alane
Reversibly ............................................ 269
9.7. Conclusion ............................................ 275
References ................................................. 275
10.Nanoparticles and 3D Supported Nanomaterials ............... 279
Petra E. de Jongh and Philipp Adelhelm
10.1.Introduction .......................................... 279
10.2.Particle Size Effects ................................. 281
10.2.1.Thermodynamics ................................. 281
10.2.2.Kinetics ....................................... 287
10.3.Non-Supported Clusters, Particles and
Nanostructures ........................................ 290
10.3.1.Transition Metal Clusters ...................... 291
10.3.2.Interstitial Hydrides, Focussing on Palladium
Hydride ........................................ 293
10.3.3.Ionic Hydrides, Focussing on Magnesium
Hydride ........................................ 296
10.4.Support Effects ....................................... 301
10.4.1.Stabilization of Small Particle Sizes .......... 302
10.4.2.Limiting Phase Segregation in Complex
Systems ........................................ 303
10.4.3.Metal-Substrate Interaction .................... 305
10.4.4.Physical Confinement and Clamping .............. 307
10.4.5.Thermal Properties of the System ............... 309
10.4.6.Mechanical Stability and Pressure Drop ......... 309
10.5.Preparation of Three-Dimensional Supported
Nanomaterials ......................................... 311
10.5.1.Support Materials .............................. 311
10.5.1.1.Silica ................................ 312
10.5.1.2.Carbon ................................ 314
10.5.1.3.Other Support Materials ............... 316
10.5.2.Preparation Strategies ......................... 317
10.5.2.1.Solution Impregnation ................. 318
10.5.2.2.Melt Infiltration ..................... 320
10.6.Experimental Results on 3D-Supported Nanomaterials .... 322
10.6.1.Ammonia Borane, (NH3BH3) ....................... 323
10.6.2.Sodium Alanate, (NaAlH4) ....................... 325
10.6.3.Magnesium Hydride (MgH2) ....................... 329
10.6.4.Lithium Borohydride (LiBH4) .................... 331
10.6.5.Palladium ...................................... 333
10.7.Conclusions and Outlook ............................... 334
References ................................................. 336
Index ......................................................... 341
|