Financial markets: principles of modelling, forecasting and decision-making; 2 (Lodz, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFinancial markets: principles of modelling, forecasting and decision-making. N 2 / ed. by W.Milo, P.Wdowinski. - Lódź: Lódź University Press, 2006. - 284 p. - Incl. bibl. ref. - (FindEcon Monograph Series). - ISBN 978-83-7525-022-0
 

Оглавление / Contents
 
Introduction (Władysław Milo and Piotr Wdowiński) ............... 7

Part One: Bayesian Econometrics in Finance

1  Bayes Factors for Bivariate GARCH and SV Models (Jacek 
   Osiewalski, Anna Pajor and Mateusz Pipień) .................. 15
   1.1. Introduction ........................................... 15
   1.2. Statistical Methodology ................................ 17
   1.3. The Competing Bayesian Models .......................... 19
        1.3.1  Bivariate GARCH  Specifications ................. 19
               1.3.1.1  VECH and BEKK Models ................... 20
               1.3.1.2  CCC and DCC Models ..................... 23
        1.3.2  Bivariate Stochastic Volatility 
               Specifications .................................. 26
               1.3.2.1  Stochastic Discount Factor Model - 
                        SDF .................................... 26
               1.3.2.2  Basic Stochastic Volatility Model - 
                        BSV .................................... 27
               1.3.2.3  Bivariate Stochastic Volatility 
                        Model - JSV ............................ 27
               1.3.2.4  Bivariate Stochastic Volatility 
                        Model - TSV ............................ 28
   1.4  The Data and Results of Model Comparison ............... 30
   1.5  Concluding Remarks ..................................... 33
   References .................................................. 34
2  A Bayesian Analysis of STUR Models (Jacek Kwiatkowski) ...... 37
   2.1  Introduction ........................................... 37
   2.2  Model and Bayesian Inference ........................... 38
   2.3  Model Comparison and Forecasting ....................... 42
   2.4  An Empirical Example ................................... 44
   2.5  Conclusions ............................................ 47
   References .................................................. 47
3  VECM-TSV Models for Two Polish Official Exchange Rates
   (Anna Pajor) ................................................ 49
   3.1  Introduction ........................................... 49
   3.2  Multivariate Stochastic Volatility Process ............. 50
   3.3  Model Frameworks ....................................... 53
   3.4  Bayesian Inference for the Trivariate VECM-TSV Model ... 54
   3.5  Empirical Results ...................................... 56
        3.5.1  Posterior Results for the Parameters and
               Unobserved Variables ............................ 57
        3.5.2  Posterior Inference on Conditional Correlation
               Coefficient and Volatilities .................... 59
   3.6  Conclusions ............................................ 61
   Appendix: MCMC Algorithm for Trivariate TSV Model - The
   Full Conditional Distributions .............................. 62
   References .................................................. 66
4  Application of Bayesian Inference in Value-at-Risk
   Forecasting with the Use of Conditionally Asymmetric and
   Fat-Tailed GARCH Models (Mateusz Pipień) .................... 67
   4.1  Introduction ........................................... 67
   4.2  Competing GARCH Specifications ......................... 68
   4.3  VaR from Predictive Densites and Capital Charge for
        Market Risk ............................................ 70
   4.4  Evaluation of VaR Forecasts ............................ 72
   4.5  Empirical Results ...................................... 74
   4.6  Concluding Remarks ..................................... 78
   References .................................................. 79
5  Bayesian Inference on Discretely Sampled Itô Processes
   (Maciej Kostrzewski) ........................................ 81
   5.1  Introduction ........................................... 81
   5.2  Models ................................................. 82
        5.2.1  The Vasiček Model (V) ........................... 82
        5.2.2  The Black-Scholes Model (BS) .................... 83
        5.2.3  The Cox-Ingersoll-Ross Model (CIR) .............. 83
        5.2.4  The Extended Ornstein-Uhlenbeck Model (EOU) ..... 84
        5.2.5  The Brennan-Schwartz Model (BSBS) ............... 84
   5.3  Estimation of Parameters ............................... 85
        5.3.1  The Hermit Series Expansion Method .............. 86
        5.3.2  The Method Based on Solving the Fokker-Plack-
               Kolmogorov Equations ............................ 87
   5.4  The Bayesian Inference ................................. 88
   5.5  Modeling and Forecasting the Fed Data .................. 90
   5.6  Concluding Remarks ..................................... 95
   References .................................................. 95

Part Two: Volatility in Financial Markets

6  Online Testing of Switching Volatility (David Bock) ......... 99
   6.1  Introduction ........................................... 99
   6.2  Notation and Specifications ........................... 101
   6.3  Tests Based on a Moving Sum ........................... 103
        6.3.1  I.I.D. Gaussian Process ........................ 103
        6.3.2  I.I.D. Non-Gaussian Process .................... 105
        6.3.3  GARCH(l.l)  Process ............................ 105
   6.4  Simulation Study ...................................... 106
        6.4.1  Size Properties ................................ 107
        6.4.2  Power Properties ............................... 110
               6.4.2.1  The Size of the Shift ................. 110
               6.4.2.2  The Time of the Shift ................. 112
   6.5  Consequences of Having α < 1 .......................... 113
   6.6  Monitoring the Volatility of the Hang Seng Index ...... 114
   6.7  Discussion and Concluding Remarks ..................... 116
   Appendix: Simulated Exact Critical Values of MOSUMQes and
   MOSUMQgarch Yielding Sizes 10% ............................. 118
   References ................................................. 120
7  Modeling the Realized Volatility with ARFIMA and
   Unobserved Component Models: Results from the Polish
   Financial Market (Malgorzata Doman) ........................ 123
   7.1  Introduction .......................................... 123
   7.2  Realized Volatility ................................... 124
   7.3  The Data .............................................. 126
   7.4  ARFIMA Models ......................................... 128
   7.5  Unobserved Components Models .......................... 128
   7.6  Empirical Results ..................................... 129
   7.7  Conclusions ........................................... 136
   References ................................................. 137
8  Forecasting the Conditional Skewness and Kurtosis of
   the Polish Financial Returns (Ryszard Doman) ............... 139
   8.1  Introduction .......................................... 139
   8.2  Hansen's Skewed Student-t Distribution ................ 140
   8.3  A GARCH Model Allowing for Time-Varying Conditional
        Skewness and Kurtosis ................................. 141
   8.4  The Data .............................................. 143
   8.5  Estimation Results .................................... 144
   8.6  The Dynamics of Volatility and Conditional Skewness
        and Kurtosis .......................................... 145
   8.7. Results Concerning the Forecasts ...................... 149
   8.8  Conclusions ........................................... 153
   References ................................................. 153

Part Three: Derivative Instruments

9. Optimal Futures Hedging Decisions in Fractionally
   Cointegrated Markets (Piotr Humeńczuk) ..................... 157
   9.1  Introduction .......................................... 157
   9.2  Futures Hedging ....................................... 158
   9.3  Cointegration Relationship ............................ 159
   9.4  Hedge Ratio Estimation ................................ 160
   9.5  Data Description ...................................... 164
   9.6  Empirical Results ..................................... 164
   9.7  Concluding Remarks .................................... 169
   References ................................................. 169
10 Quasi-Monte Carlo Method in Pricing Barrier Options
   (Tomasz Oczadły) ........................................... 171
   10.1 Low-Discrepancy Numbers ............................... 171
   10.2 Vanilla Barrier Options ............................... 173
   10.3 Pricing Options Using Monte Carlo Approach ............ 175
   10.4 Numerical Examination ................................. 177
   10.5 Conclusions ........................................... 182
   References ................................................. 183
11 The Cost-of-Carry Model for the FW20 Futures Contracts:
   Threshold Cointegration Framework (Joanna Bruzda) .......... 185
   11.1 Introduction .......................................... 185
   11.2 Methodology ........................................... 188
   11.3 Emprical Results ...................................... 195
   11.4 Conclusions ........................................... 205
   References ................................................. 205

Part Four: Modeling Stock Prices

12 Modeling and Predicting Japanese Stock Returns Based on
   the ARFIMA-FIGARCH (Jun Nagayasu) .......................... 211
   12.1 Introduction .......................................... 211
   12.2 Stock Returns and Explanatory Variables ............... 212
   12.3 Empirical Results ..................................... 216
        12.3.1 Results from the Statistical Model ............. 216
        12.3.2 Forecasting  Performance ....................... 219
   12.4 Summary and Discussion ................................ 221
   References ................................................. 221
13 Asymmetry in the Adjustment of Main Capital Market
   Indices in Poland {Pawel Milobędzki) ....................... 223
   13.1 Introduction .......................................... 223
   13.2 Indices and Their Characteristics ..................... 224
   13.3 Testing for a Unit Root in the Case of Series
        Asymmetry ............................................. 228
   13.4 Conclusion ............................................ 230
   Appendix ................................................... 231
   References ................................................. 241
14 Test of the CAPM Model with Time-Varying Covariances for
   the Polish Stock Market (Piotr Fiszeder) ................... 243
   14.1 Introduction .......................................... 243
   14.2 Model  Specification .................................. 244
   14.3 Test of the CAPM Model for the Polish Stock Market .... 247
        14.3.1 The CAPM Model with a Constant Price of
               Market Risk .................................... 247
        14.3.2 Specification Tests of the CAPM Model with
               a Constant Price of Market Risk ................ 250
        14.3.3 Specification Tests of the CAPM Model with
               Time-Varying Price of Market Risk .............. 254
   14.4 Conclusions ........................................... 256
   References ................................................. 256
15 Detecting Nonlinear Causality in Financial Markets
   (Magdalena Osińska and Witold Orzeszko) .................... 259
   15.1 Introduction .......................................... 259
   15.2 The Foundations of the Methodology .................... 260
   15.3 The Hiemstra-Jones Testing Procedure .................. 262
   15.4 Case Study ............................................ 264
   15.5 Detecting Nonlinear Causal Relations in Financial
        Time Series ........................................... 269
   15.6 Conclusions ........................................... 274
   References ................................................. 275
16 Analysis of Influence of Russian Stock Market Into
   Ukrainian Stock Market (Kostyantyn  Stryzhychenko) ......... 277
   16.1 Introduction .......................................... 277
   16.2 Tasks ................................................. 278
   16.3 Basic Definitions of the Cross-Spectral Analysis ...... 279
   16.4 Results ............................................... 280
   16.5 Conclusions ........................................... 284
   References ................................................. 285


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:18 2019. Размер: 16,572 bytes.
Посещение N 2313 c 21.09.2010