Bartoszewski Z. Approximate methods for functional differential equations (Gdansk, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBartoszewski Z. Approximate methods for functional differential equations. - Gdańsk: Wydawnictwa Politechniki Gdańskiej, 2009. - 171 p. - (Politechnika Gdańska. Monografie; 92). - Ref.: p.161-167. - ISBN 978-83-7348-253-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
PREFACE ......................................................... 5
LIST OF ABBREVIATIONS AND SYMBOLS ............................... 6

1. INTRODUCTION ................................................. 7
   1.1. Classes of functional differential equations ............ 7
   1.2. Applications of functional differential equations in 
        science and engineering ................................. 9
   1.3. Direct approximate methods ............................. 13
   1.4. Iterative methods for solution of functional 
        differential equations ................................. 16
   1.5. Direct approximate methods versus iterative methods .... 20
2. TWO-STEP RUNGE KUTTA METHODS AS DIRECT NUMERICAL METHODS
   FOR DELAY DIFFERENTIAL EQUATIONS ............................ 23
   2.1. Introduction ........................................... 23
   2.2. Stability of TSRK methods .............................. 25
   2.3. Order conditions ....................................... 32
   2.4. Order conditions for CTSRK methods ..................... 34
   2.5. Construction of TSRK methods with a given stability
        polynomial ............................................. 35
        2.5.1. Examples of construction of three stage TSRK 
               methods of order four and four stage TSRK 
               methods of order five ........................... 40
        2.5.2. An example of implementation of 
               the constructed four stage explicit TSRK 
               method of order and stage order p = q = 5 ....... 43
        2.5.3. Numerical experiments ........................... 48
   2.6. Construction and implementation of TSRK methods using
        Nordsieck representation ............................... 50
        2.6.1. Error propagation ............................... 51
        2.6.2. Starting procedure .............................. 53
        2.6.3. Computation of approximations to the Nordsieck
               vector z(tn+1,hn) and hnp+ly{p+l)(tn+l) ............. 53
        2.6.4. Computation of ỹn and hn+1ƒ(Ỹ[n]) ................. 56
        2.6.5. An example of construction of three stage TSRK
               methods of order and stage order three .......... 57
        2.6.6. Derivation of continuous explicit TSRK methods
               of order three .................................. 59
        2.6.7. Numerical experiments ........................... 62
   2.7. Construction of implicit stiffly accurate TSRK
        methods ................................................ 67
        2.7.1. Continuous extensions to stiffly accurate TSRK
               methods ......................................... 70
        2.7.2. Numerical experiments ........................... 72
   2.8. Highly stable parallel two-step Runge-Kutta methods 
        and their P-stable continuous extensions ............... 73
        2.8.1. Construction of P-stable TSRK methods for DDEs
               with s = 1 and p = g = 2 ........................ 74
   2.9. Construction of P-stable TSRK methods for DDEs with 
        s = 2 and p = q = 3 .................................... 75
        2.9.1. Construction of P-stable TSRK methods for DDEs
               with s = 3 and p = q = 4 ........................ 78
        2.9.2. Numerical experiments ........................... 80
3. ITERATIVE METHODS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS
   AND DELAY-DEPENDENT ERROR ESTIMATES ......................... 82
   3.1. Convergence of WR methods for functional differential
        systems of equations and the existence and uniqueness
        of the solution on the whole interval I ................ 82
        3.1.1. Convergence and error estimates of WR methods
               for functional differential systems of 
               equations ....................................... 82
        3.1.2. The convergence of the perturbed continuous-
               time WR methods ................................. 91
        3.1.3. The existence and uniqueness of the solution 
               on the whole interval ........................... 93
   3.2. Delay-dependent error estimates for WR methods ......... 95
        3.2.1. Error estimates for WR methods .................. 95
        3.2.2. Error estimates for nonnegative m ............... 99
        3.2.3. Error estimates for nonpositive m .............. 101
        3.2.4. Other error estimates for WR methods ........... 102
        3.2.5. Error estimates for special cases .............. 103
        3.2.6. A general case of WR methods ................... 105
        3.2.7. A discussion of the results and other
               remarks ........................................ 112
   3.3. Examples .............................................. 114
   3.4. Delay-dependent error estimates for WR methods for
        neutral functional differential systems ............... 118
        3.4.1. Introductory remarks ........................... 118
        3.4.2. Existence of WR iterations ..................... 120
        3.4.3. Convergence of WR iterations ................... 122
        3.4.4. Delay dependent error estimates ................ 126
   3.5. Error estimates for special cases ..................... 130
        3.5.1. Numerical examples ............................. 133
   3.6. Convergence V iterative methods for general 
        differential algebraic systems ........................ 137
        3.6.1. Existent and uniqueness of solution.
               Convergence of WR methods ...................... 137
        3.6.2. Special cases of problem (3.189)-(3.190) and
               other remarks .................................. 143
        3.6.3. Existence and uniqueness of solution to
               quasi-linear system and convergence of WR 
               methods ........................................ 146
        3.6.4. The convergence of iterations of the Gauss-
               Seidel and other types ......................... 150
   3.7. A one sided Lipschitz condition. The existence and
        uniqueness of a solution and the convergence of WR 
        methods ............................................... 153
        3.7.1. Comments and examples .......................... 155

REFERENCES .................................................... 160
SUMMARY IN ENGLISH ............................................ 168
SUMMARY IN POLISH ............................................. 170


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:14 2019. Размер: 10,278 bytes.
Посещение N 1799 c 17.08.2010