Handbook of applied solid state spectroscopy (New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of applied solid state spectroscopy / ed. by D.R.Vij. - New York: Springer, 2006. - xix, 741 p.: ill. - Incl. bibl. ref. - Ind.: p.729-741. - ISBN-10 0-387-32497-6; ISBN-13 978-0-387-32497-5
 

Оглавление / Contents
 
Preface ......................................................... v
Contributors ................................................. xvii

1  Nuclear Magnetic Resonance Spectroscopy ...................... 1
   Eduardo Ribeiro de Azevedo and Tito Josė Bonagamba
   1.1  Introduction ............................................ 1
   1.2  Properties of Nuclear Spins ............................. 1
   1.3  Nuclear Spin Interactions in Solids ..................... 2
        1.3.1  General Structure of the Internal Hamiltonians ... 5
        1.3.2  Behavior of Internal Hamiltonians under
               Rotations ........................................ 6
   1.4  Quantum Mechanical Calculations ......................... 8
        1.4.1  Quantum Mechanical Description of NMR ............ 9
        1.4.2  The NMR Signal—Zeeman Interaction ............... 13
   1.5  High Resolution Solid State NMR Methods ................ 13
        1.5.1  Dipolar Decoupling .............................. 14
        1.5.2  Magic-Angle Spinning (MAS) ...................... 14
        1.5.3  Cross-Polarization (CP) ......................... 19
        1.5.4  The CP-MAS Experiment ........................... 19
        1.5.5  NMR Spectra ..................................... 20
   1.6  Principles of Two-Dimensional Spectroscopy ............. 22
   1.7  Molecular Dynamics and Local Molecular Conformation
        in Solid Materials ..................................... 23
        1.7.1  Lineshape Analysis .............................. 23
        1.7.2  Two-Dimtensional Exchange NMR Experiments ....... 32
        1.7.3  One-Dimensional Exchange NMR Experiments ........ 45
        1.7.4  Conformation-NMR ................................ 53
   References .................................................. 59
2  Nuclear Quadrupole Resonance Spectroscopy ................... 65
   Bryan H. Suits
   2.1  Introduction ........................................... 65
   2.2  Basic Theory ........................................... 66
        2.2.1  The Nuclear Electric Quadrupole Interaction ..... 66
        2.2.2  Energy Levels and Transition Frequencies ........ 70
        2.2.3  Excitation and Detection ........................ 72
        2.2.4  The Effect of a Small Static Magnetic Field ..... 77
        2.2.5  Linewidths and Relaxation Times ................. 79
   2.3  Instrumentation ........................................ 82
        2.3.1  CW Spectrometers ................................ 83
        2.3.2  Pulsed Spectrometers ............................ 84
        2.3.3  Field Cycling NQR Spectrometers ................. 87
        2.3.4  Some Less Common NQR Detection Schemes .......... 88
   2.4  Interpretation of Coupling Constants ................... 89
        2.4.1  Molecular Crystals and Covalently Bonded
               Groups .......................................... 90
        2.4.2  Ionic Crystals .................................. 91
        2.4.3  Metals .......................................... 92
        2.4.4  Sternheimer Shielding/Antishielding ............. 92
   2.5  Summary ................................................ 93
   References .................................................. 94
   Bibliography ................................................ 96
3  Electron Paramagnetic Resonance Spectroscopy ................ 97
   Sergei A. Dikanov and Antony R. Crofts
   3.1  Introduction ........................................... 97
   3.2  Theoretical Background ................................. 98
        3.2.1  EPR Condition ................................... 98
        3.2.2  Continuous Wave-EPR ............................. 99
        3.2.3  EPR Lineshape: Relaxation Times ................. 99
        3.2.4  EPR Spin-Hamiltonian ........................... 102
        3.2.5  Electron-Nuclear Interactions: Hyperfine
               Structure ...................................... 106
        3.2.6  Homogeneous and Inhomogeneous Line
               Broadening ..................................... 1ll
        3.2.7  Pulsed-EPR ..................................... 11l
   3.3  Experimental .......................................... 119
        3.3.1  Design of CW-EPR Spectrometer .................. 119
        3.3.2  Design of Pulsed-EPR Spectrometer .............. 121
        3.3.3  Resonators ..................................... 121
        3.3.4  HPR Bands, Multifrequency Experiments .......... 122
   3.4  Applications of EPR Spectroscopy ...................... 123
        3.4.1  CW-EPR and Pulsed-EPR in Single Crystals ....... 123
        3.4.2  Orientation-Disordered Samples ................. 127
        3.4.3  Two-Dimensional ESEEM .......................... 140
        3.4.4  Measurement of Relaxation Times in CW- and
               Pulsed-EPR ..................................... 143
        3.4.5  Interaction Between Electron Spins ............. 145
   References ................................................. 146
4  ENDOR Spectroscopy ......................................... 151
   Lowell D. Kispert and Lidia Piekara-Sady
   4.1  Introduction .......................................... 151
   4.2  Experimental Conditions for ENDOR ..................... 156
        4.2.1  Sensitivity, Magnetic Field Homogeneity, and
               Stability ...................................... 157
        4.2.2  Sample Size .................................... 158
        4.2.3  Introduction of RF Power into Cavity ........... 158
        4.2.4  RF Power Level: CW versus Pulsed Schemes ....... 159
        4.2.5  Mode of Detection and Modulation Scheme ........ 159
        4.2.6  ENDOR Mechanism ................................ 159
        4.2.7  Extension of ENDOR: TRIPLE Resonance ........... 162
   4.3  ENDOR in the Solid State .............................. 163
        4.3.1  Single Crystals ................................ 164
        4.3.2  Organic Free Radicals .......................... 167
        4.3.3  Transition Metal Ions .......................... 169
        4.3.4  Disordered Solids .............................. 173
   4.4  Pulsed ENDOR .......................................... 177
   4.5  Applications .......................................... 180
        4.5.1  Organic Radicals in Organic Host Crystals ...... 181
        4.5.2  Radicals Trapped in Matrices ................... 186
        4.5.3  Triplet-State Radicals in Crystals, Poly
               crystalline Samples ............................ 186
        4.5.4  Free Radicals in Biological Systems ............ 187
        4.5.5  Polymeric Systems .............................. 188
        4.5.6  Inorganic Radicals in Irradiated Inorganic
               Single Crystals ................................ 189
        4.5.7  Inorganic Paramagnetic Complexes in Organic
               Single Crystals ................................ 189
        4.5.8  F and H Centers in Inorganic Host Crystals ..... 189
        4.5.9  Paramagnetc Inorganic Ions in Organic Host
               Crystals ....................................... 190
        4.5.10 Transition Metal Ion Complexes in Frozen
               Solutions and Powders .......................... 190
        4.5.11 Defects and Complexes on Surfaces .............. 190
        4.5.12 Impurity Centers in Semiconductor Host
               Crystals ....................................... 191
        4.5.13 Spin Centers in Silicon and Borate Systems ..... 192
        4.5.14 Paramagnetic Centers in Cubic Host Crystals .... 192
        4.5.15 Perovskite-Type Materials ...................... 192
   References ................................................. 193
5  Mossbauer Spectroscopy ..................................... 201
   J.M. Cadogan and D.H. Ryan
   5.1  Introduction .......................................... 201
        5.1.1  Recoilless Processes ........................... 201
        5.1.2  Doppler Velocity ............................... 203
        5.1.3  Lineshape ...................................... 203
        5.1.4  Hyperfine Interactions ......................... 203
   5.2  Methodology ........................................... 212
        5.2.1  Drives ......................................... 214
        5.2.2  Detectors ...................................... 215
        5.2.3  Data Collection ................................ 218
        5.2.4  Calibration .................................... 220
        5.2.5  Sources ........................................ 222
        5.2.6  Cryostats ...................................... 225
        5.2.7  Emission-Based Techniques ...................... 229
   5.3  Applications .......................................... 234
        5.3.1  Magnetism ...................................... 234
        5.3.2  Magnetic Reorientations ........................ 237
        5.3.3  Crystal Fields ................................. 239
        5.3.4  Phase Analysis ................................. 239
        5.3.5  Amorphous Materials ............................ 241
        5.3.6  Electronic Relaxation .......................... 245
        5.3.7  Electronic Valence ............................. 245
        5.3.8  Industrial Applications ........................ 248
   5.4  Concluding Remarks .................................... 254
   References ................................................. 254
6  Crystal Field Spectroscopy ................................. 257
   Albert Furrer and Andrew Podlesnyak
   6.1  Introduction .......................................... 257
   6.2  The Crystal Field Interaction ......................... 259
        6.2.1  Basic Formalism ................................ 259
        6.2.2  Model Calculations of the Crystal Field
               Interaction .................................... 263
        6.2.3  Parametrization of the Crystal Field
               Interaction .................................... 266
        6.2.4  Extrapolation Schemes .......................... 267
        6.2.5  Calculation of Thermodynamic Magnetic
               Properties ..................................... 268
   6.3  Experimental Techniques ............................... 268
        6.3.1  Introductory Remarks ........................... 268
        6.3.2  Neutron Spectroscopy ........................... 269
        6.3.3  Raman Spectroscopy ............................. 276
        6.3.4  Point-Contact Spectroscopy ..................... 278
   6.4  Determination of Crystal Field Parameters from
        Experimental Data ..................................... 280
        6.4.1  A Simple Two-Parameter Crystal Field Problem ... 280
        6.4.2  A Complicated Many-Parameter Crystal Field
               Problem ........................................ 283
   6.5  Interactions of Crystal Field Split Ions .............. 287
        6.5.1  Introductory Remarks ........................... 287
        6.5.2  Interaction with Phonons ....................... 287
        6.5.3  Interaction with Conduction Electrons .......... 288
        6.5.4  Magnetic Exchange Interaction .................. 290
   6.6  Crystal Field Effects Related to High-Temperature
        Superconductivity ..................................... 291
        6.6.1  Introductory Remarks ........................... 291
        6.6.2  The Crystal Field as a Local Probe: Evidence
               for Materials Inhomogeneities .................. 292
        6.6.3  Relaxation Phenomena to Probe the Pseudogap .... 297
   6.7  Concluding Remarks .................................... 300
   References ................................................. 301
7  Scanning Tunneling Spectroscopy (STS) ...................... 305
   K.W.Hipps
   7.1  Introduction .......................................... 305
   7.2  The Scanning Tunneling Microscope (STM) ............... 307
        7.2.1  Commercial Instruments ......................... 312
        7.2.2  Tips ........................................... 313
   7.3  Scanning Tunneling Spectroscopy (STS) of
        Semiconductors and Metals ............................. 315
   7.4  Electron Tunneling Spectroscopy of Adsorbed
        Molecules ............................................. 319
   7.5  Practical Considerations Relating to STM-IETS and
        STM-OMTS .............................................. 326
        7.5.1  STM-Based Orbital-Mediated Tunneling Spectra
               and Electrochemistry ........................... 328
        7.5.2  STM-Based OMTS and Ultraviolet Photoemission
               Spectroscopy ................................... 332
        7.5.3  OMTS as a Chemical Analysis Tool: Direct
               Spectral Characterization ...................... 337
        7.5.4  OMTS as a Chemical Analysis Tool: Bias-
               Dependent Imaging .............................. 342
        7.5.5  OMTS as a Submolecular Electron Transport
               Mapping Tool ................................... 343
   7.6  Some Concluding Points ................................ 345
   References ................................................. 346
8  Resonance Acoustic Spectroscopy ............................ 351
   Farhang Honarvar and Esmaeil Enjilela
   8.1  Introduction .......................................... 351
   8.2  Scattering of Waves ................................... 352
        8.2.1  Physics of Acoustic Resonance Scattering ....... 352
        8.2.2  Acoustic Wave Scattering from Elastic
               Targets ........................................ 354
   8.3  Mathematical Models ................................... 356
        8.3.1 Resonance Scattering Theory (RST) ............... 368
   8.4  Method of Isolation and Identification of Resonances
        (MIIR) ................................................ 371
        8.4.1  Introduction ................................... 371
        8.4.2  Quasi-Harmonic MIIR ............................ 371
        8.4.3  Short-Pulse MIIR ............................... 375
   8.5  Experimental and Numerical Results .................... 377
        8.5.1  Introduction ................................... 377
        8.5.2  Characterization of Target Shape by RAS ........ 377
        8.5.3  Material Characterization by Resonance
               Acoustic Spectroscopy (MCRAS) .................. 381
        8.5.4  Nondestructive Evaluation (NDE) of Clad Rods
               by RAS ......................................... 385
        8.5.5  Nondestructive Evaluation of Epon-815 Clad
               Steel Rod by RAS ............................... 386
        8.5.6  Characterization of Cladding Delamination ...... 388
        8.5.7  Nondestructive Evaluation (NDE) of
               Explosively Welded Clad Rods by RAS ............ 390
        8.5.8  Nondestructive Evaluation of Fiber-Reinforced
               Composite Rods ................................. 395
        8.5.9  Nondestructive Evaluation of Continuously
               Cast Rods by RAS ............................... 399
   References ................................................. 407
9  Fourier Transform Infrared Spectroscopy .................... 411
   Neena Jaggi and D.R. Vij
   9.1  Introduction .......................................... 411
   9.2  Historical Background ................................. 413
   9.3  FT-IR Spectroscopy .................................... 416
        9.3.1  Basic Integral Equation ........................ 417
        9.3.2  Experimental Setup ............................. 419
        9.3.3  Advantages ..................................... 421
        9.3.4  Other Aspects .................................. 427
   9.4  Applications .......................................... 436
        9.4.1  Atmospheric Pollution .......................... 438
        9.4.2  Study of Planetary Atmosphere .................. 440
        9.4.3  Surface Studies ................................ 443
        9.4.4  Characterization of Optical Fibers ............. 444
        9.4.5  Vibrational Analysis of Molecules .............. 444
        9.4.6  Study of Biological Molecules .................. 445
        9.4.7  Study of Polymers .............................. 446
   References ................................................. 447
10 Augei; Electron Spectroscopy ............................... 451
   Richard P. Gunawardane and Christopher R. Arumainayagam
   10.1 Introduction .......................................... 451
   10.2 Historical Perspective ................................ 454
   10.3 Basic Principles of AES ............................... 454
        10.3.1 X-Ray Notation ................................. 454
        10.3.2 Auger Transitions .............................. 455
        10.3.3 Kinetic Energies of Auger Electrons ............ 457
   10.4 Instrumentation ....................................... 459
        10.4.1 Electron Optical Column ........................ 459
        10.4.2 Ion Optical Column ............................. 461
        10.4.3 Electron Energy Analyzers ...................... 462
        10.4.4 Electron Detector .............................. 464
        10.4.5 Computer Control and Data Display Systems ...... 464
   10.5 Experimental Procedures Including Sample
        Preparation ........................................... 465
        10.5.1 Sample ......................................... 465
        10.5.2 Beam Effects and Surface Damage ................ 465
        10.5.3 AES Modifications and Combinations with
               Other Techniques ............................... 466
   10.6 Auger Spectra: Direct and Derivative Forms ............ 466
   10.7 Applications .......................................... 468
        10.7.1 Qualitative Analysis ........................... 468
        10.7.2 Quantitative Analysis .......................... 468
        10.7.3 Chemical Information ........................... 472
        10.7.4 Auger Depth Profiling .......................... 473
        10.7.5 Auger Images and Linescans ..................... 476
        10.7.6 Research and Industry .......................... 477
   10.8 Recent Advances ....................................... 479
        10.8.1 Positron-Annihilation-Induced AES .............. 480
        10.8.2 Auger Photoelectron Coincidence Spectroscopy ... 480
   10.9 Conclusions ........................................... 481
   References ................................................. 481
11 X-Ray Photoelectron Spectroscopy ........................... 485
   Hsiao-Lu Lee and Nolan T. Flynn
   11.1 Introduction and Basic Theory ......................... 485
   11.2 Historical Perspective ................................ 486
   11.3 Instrumentation ....................................... 486
        11.3.1 Vacuum System .................................. 487
        11.3.2 X-Ray Source ................................... 489
        11.3.3 Electron Energy Analyzer ....................... 492
   11.4 Sample Selection and Preparation ...................... 492
        11.4.1 Sample Charging ................................ 493
        11.4.2 X-Ray Beam Effects ............................. 495
   11.5 Spectral Analysis ..................................... 496
        11.5.1 Core Level Splitting ........................... 498
        11.5.2 Linewidths ..................................... 500
        11.5.3 Elemental Analysis: Qualitative and
               Quantitative ................................... 500
        11.5.4 Secondary Structure ............................ 501
   11.6 XPS Imaging ........................................... 502
   11.7 Angle-Resolved XPS .................................... 504
   11.8 Recent Advances and Applications ...................... 504
   11.9 Conclusions ........................................... 506
   References ................................................. 506
12 Luminescence Spectroscopy .................................. 509
   Baldassare Di Bartolo and John Collins
   12.1 Introduction .......................................... 509
        12.1.1 Basic Concepts ................................. 509
        12.1.2 History ........................................ 510
   12.2 Spontaneous Emission, Absorption, and Induced
        Emission .............................................. 511
        12.2.1 Classical Bound, Radiating Electron ............ 511
        12.2.2 Quantum Mechanical Radiative Decay ............. 513
        12.2.3 Absorption and Emission ........................ 516
        12.2.4 Absorption Coefficient and Absorption Cross-
               Section ........................................ 518
   12.3 Measurements and Techniques ........................... 519
        12.3.1 Absorption Spectra ............................. 519
        12.3.2 Luminescence Spectra ........................... 521
        12.3.3 Excitation Spectra ............................. 522
        12.3.4 Responses to Pulsed Excitation ................. 522
   12.4 Localized Systems ..................................... 523
        12.4.1 Introduction ................................... 523
        12.4.2 The Hamiltonian of an Ion in a Solid ........... 524
        12.4.3 Rare Earth Ions in Solids ...................... 524
        12.4.4 Transition Metal Ions in Solids ................ 528
        12.4.5 Color Centers in Solids ........................ 535
   12.5 Processes in Localized System Service ................. 539
        12.5.1 Introduction ................................... 539
        12.5.2 Radiative Decay ................................ 540
        12.5.3 Multiphonon Decay .............................. 542
        12.5.4 Vibronic Transitions ........................... 545
        12.5.5 Energy Transfer ................................ 547
        12.5.6 Upconversion ................................... 548
        12.5.7 Line Broadening and Shifting with
               Temperature .................................... 549
   12.6 Delocalized Systems ................................... 551
        12.6.1 Density of One-Electron States and Fermi
               Probability Distribution ....................... 551
        12.6.2 Classification of Crystalline Solids ........... 552
        12.6.3 Intrinsic Semiconductors ....................... 554
        12.6.4 Doped Semiconductors ........................... 556
        12.6.5 Model for a Doped Semiconductor ................ 557
   12.7 Processes in Delocalized Systems ...................... 560
        12.7.1 Direct Gap and Indirect Gap Semiconductors ..... 560
        12.7.2 Excitation in Insulators and Large Band Gap
               Semiconductors ................................. 561
        12.7.3 Radiative Transitions in Pure Semiconductors ... 562
        12.7.4 Doped Semiconductors ........................... 564
        12.7.5 Radiative Transitions Across the Band Gap ...... 565
        12.7.6 Non-Radiative Processes ........................ 566
        12.7.7 p-n Junctions .................................. 567
   12.8 Direction of Future Efforts ........................... 571
        12.8.1 Why Luminescence? .............................. 571
        12.8.2 Challenges and Future Work ..................... 571
   References ................................................. 574
   Bibliography ............................................... 575
13 Laser-Induced Fluorescence Spectroscopy .................... 577
   G. Geipel
   13.1 Introduction .......................................... 577
   13.2 Experimental Setup .................................... 578
   13.3 Fluorescence Spectroscopy of Minerals ................. 579
   13.4 Fluorescence Spectroscopy of Surface Species and in
        Solid Phases .......................................... 584
   13.5 Fluorescence Spectroscopy of Frozen Samples ........... 586
   13.6 Fluorescence Spectroscopy of Non-Actinide Solid
        Matrices .............................................. 589
   13.7 Outlook ............................................... 591
   References ................................................. 591
14 Soft X-Ray Emission and Resonant Inelastic Scattering
   Spectroscopy ............................................... 595
   E.J. Nordgren, S.M. Butorin, L.C. Duda, and J.-H. Guo
   14.1 Introduction .......................................... 595
   14.2 Properties of X-Ray Spectra ........................... 597
   14.3 Resonant Inelastic X-Ray Scattering ................... 602
   14.4 Experimental Techniques ............................... 605
        14.4.1 Grating Spectrometers for Soft X-Ray
               Emission ....................................... 605
        14.4.2 Samples at Ambient Conditions .................. 608
   14.5 Applications .......................................... 609
        14.5.1 Surfaces, Interfaces, and Thin Films ........... 609
        14.5.2 Nano Structures ................................ 615
        14.5.3 Transition Metal Systems ....................... 619
   14.6 Summary ............................................... 654
   References ................................................. 654
15 Laser Raman Spectroscopy ................................... 661
   Alfons Schulte and Yu Guo
   15.1 Introduction .......................................... 661
   15.2 Spontaneous Raman Scattering .......................... 663
   15.3 Experimental Approaches ............................... 666
   15.4 Applications .......................................... 670
        15.4.1 Glasses for Raman Gain ......................... 671
        15.4.2 Chalcogenide Glasses ........................... 673
        15.4.3 Chalcogenide Thin Films—Waveguide Raman ........ 675
        15.4.3 High-Pressure Raman Spectroscopy of Proteins ... 677
        15.4.4 Micro-Raman Spectroscopy ....................... 680
   15.5 Conclusions and Outlook ............................... 685
   References ................................................. 685
16 Polarization Spectroscopy of Ordered Samples ............... 689
   Peter W. Thulstrup and Erik W. Thulstrup
   16.1 Introduction .......................................... 689
        16.1.1 Linearly Polarized Light ....................... 689
        16.1.2 Transition Moment Directions ................... 690
        16.1.3 Spectroscopy with Linearly Polarized Light ..... 694
   16.2 Occurrence, Production, and Optical Properties
        of Aligned Solid Samples .............................. 696
        16.2.1 Perfectly and Partially Aligned Samples ........ 696
        16.2.2 Solutes in Partially Aligning Solvents ......... 697
   16.3 One-Photon Spectroscopy: Linear Dichroism ............. 699
        16.3.1 Optical Spectroscopy with Linearly Polarized
               Light: Experimental Needs ...................... 699
        16.3.2 Mathematical Descriptions of Aligned,
               Uniaxial Samples ............................... 700
        16.3.3 LD Spectra of Aligned, Uniaxial Samples ........ 702
        16.3.4 Transition Moment Directions and Reduced
               Spectra: Symmetrical Molecules ................. 704
        16.3.5 Transition Moment Directions: Molecules
               of Lower Symmetry .............................. 715
        16.3.6 Non-Uniaxial Samples ........................... 720
   16.4 Two-Photon Spectroscopy ............................... 721
   16.5 Conclusions ........................................... 726
   References ................................................. 726


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:14 2019. Размер: 31,902 bytes.
Посещение N 2096 c 10.08.2010