Preface ......................................................... v
Contributors ................................................. xvii
1 Nuclear Magnetic Resonance Spectroscopy ...................... 1
Eduardo Ribeiro de Azevedo and Tito Josė Bonagamba
1.1 Introduction ............................................ 1
1.2 Properties of Nuclear Spins ............................. 1
1.3 Nuclear Spin Interactions in Solids ..................... 2
1.3.1 General Structure of the Internal Hamiltonians ... 5
1.3.2 Behavior of Internal Hamiltonians under
Rotations ........................................ 6
1.4 Quantum Mechanical Calculations ......................... 8
1.4.1 Quantum Mechanical Description of NMR ............ 9
1.4.2 The NMR Signal—Zeeman Interaction ............... 13
1.5 High Resolution Solid State NMR Methods ................ 13
1.5.1 Dipolar Decoupling .............................. 14
1.5.2 Magic-Angle Spinning (MAS) ...................... 14
1.5.3 Cross-Polarization (CP) ......................... 19
1.5.4 The CP-MAS Experiment ........................... 19
1.5.5 NMR Spectra ..................................... 20
1.6 Principles of Two-Dimensional Spectroscopy ............. 22
1.7 Molecular Dynamics and Local Molecular Conformation
in Solid Materials ..................................... 23
1.7.1 Lineshape Analysis .............................. 23
1.7.2 Two-Dimtensional Exchange NMR Experiments ....... 32
1.7.3 One-Dimensional Exchange NMR Experiments ........ 45
1.7.4 Conformation-NMR ................................ 53
References .................................................. 59
2 Nuclear Quadrupole Resonance Spectroscopy ................... 65
Bryan H. Suits
2.1 Introduction ........................................... 65
2.2 Basic Theory ........................................... 66
2.2.1 The Nuclear Electric Quadrupole Interaction ..... 66
2.2.2 Energy Levels and Transition Frequencies ........ 70
2.2.3 Excitation and Detection ........................ 72
2.2.4 The Effect of a Small Static Magnetic Field ..... 77
2.2.5 Linewidths and Relaxation Times ................. 79
2.3 Instrumentation ........................................ 82
2.3.1 CW Spectrometers ................................ 83
2.3.2 Pulsed Spectrometers ............................ 84
2.3.3 Field Cycling NQR Spectrometers ................. 87
2.3.4 Some Less Common NQR Detection Schemes .......... 88
2.4 Interpretation of Coupling Constants ................... 89
2.4.1 Molecular Crystals and Covalently Bonded
Groups .......................................... 90
2.4.2 Ionic Crystals .................................. 91
2.4.3 Metals .......................................... 92
2.4.4 Sternheimer Shielding/Antishielding ............. 92
2.5 Summary ................................................ 93
References .................................................. 94
Bibliography ................................................ 96
3 Electron Paramagnetic Resonance Spectroscopy ................ 97
Sergei A. Dikanov and Antony R. Crofts
3.1 Introduction ........................................... 97
3.2 Theoretical Background ................................. 98
3.2.1 EPR Condition ................................... 98
3.2.2 Continuous Wave-EPR ............................. 99
3.2.3 EPR Lineshape: Relaxation Times ................. 99
3.2.4 EPR Spin-Hamiltonian ........................... 102
3.2.5 Electron-Nuclear Interactions: Hyperfine
Structure ...................................... 106
3.2.6 Homogeneous and Inhomogeneous Line
Broadening ..................................... 1ll
3.2.7 Pulsed-EPR ..................................... 11l
3.3 Experimental .......................................... 119
3.3.1 Design of CW-EPR Spectrometer .................. 119
3.3.2 Design of Pulsed-EPR Spectrometer .............. 121
3.3.3 Resonators ..................................... 121
3.3.4 HPR Bands, Multifrequency Experiments .......... 122
3.4 Applications of EPR Spectroscopy ...................... 123
3.4.1 CW-EPR and Pulsed-EPR in Single Crystals ....... 123
3.4.2 Orientation-Disordered Samples ................. 127
3.4.3 Two-Dimensional ESEEM .......................... 140
3.4.4 Measurement of Relaxation Times in CW- and
Pulsed-EPR ..................................... 143
3.4.5 Interaction Between Electron Spins ............. 145
References ................................................. 146
4 ENDOR Spectroscopy ......................................... 151
Lowell D. Kispert and Lidia Piekara-Sady
4.1 Introduction .......................................... 151
4.2 Experimental Conditions for ENDOR ..................... 156
4.2.1 Sensitivity, Magnetic Field Homogeneity, and
Stability ...................................... 157
4.2.2 Sample Size .................................... 158
4.2.3 Introduction of RF Power into Cavity ........... 158
4.2.4 RF Power Level: CW versus Pulsed Schemes ....... 159
4.2.5 Mode of Detection and Modulation Scheme ........ 159
4.2.6 ENDOR Mechanism ................................ 159
4.2.7 Extension of ENDOR: TRIPLE Resonance ........... 162
4.3 ENDOR in the Solid State .............................. 163
4.3.1 Single Crystals ................................ 164
4.3.2 Organic Free Radicals .......................... 167
4.3.3 Transition Metal Ions .......................... 169
4.3.4 Disordered Solids .............................. 173
4.4 Pulsed ENDOR .......................................... 177
4.5 Applications .......................................... 180
4.5.1 Organic Radicals in Organic Host Crystals ...... 181
4.5.2 Radicals Trapped in Matrices ................... 186
4.5.3 Triplet-State Radicals in Crystals, Poly
crystalline Samples ............................ 186
4.5.4 Free Radicals in Biological Systems ............ 187
4.5.5 Polymeric Systems .............................. 188
4.5.6 Inorganic Radicals in Irradiated Inorganic
Single Crystals ................................ 189
4.5.7 Inorganic Paramagnetic Complexes in Organic
Single Crystals ................................ 189
4.5.8 F and H Centers in Inorganic Host Crystals ..... 189
4.5.9 Paramagnetc Inorganic Ions in Organic Host
Crystals ....................................... 190
4.5.10 Transition Metal Ion Complexes in Frozen
Solutions and Powders .......................... 190
4.5.11 Defects and Complexes on Surfaces .............. 190
4.5.12 Impurity Centers in Semiconductor Host
Crystals ....................................... 191
4.5.13 Spin Centers in Silicon and Borate Systems ..... 192
4.5.14 Paramagnetic Centers in Cubic Host Crystals .... 192
4.5.15 Perovskite-Type Materials ...................... 192
References ................................................. 193
5 Mossbauer Spectroscopy ..................................... 201
J.M. Cadogan and D.H. Ryan
5.1 Introduction .......................................... 201
5.1.1 Recoilless Processes ........................... 201
5.1.2 Doppler Velocity ............................... 203
5.1.3 Lineshape ...................................... 203
5.1.4 Hyperfine Interactions ......................... 203
5.2 Methodology ........................................... 212
5.2.1 Drives ......................................... 214
5.2.2 Detectors ...................................... 215
5.2.3 Data Collection ................................ 218
5.2.4 Calibration .................................... 220
5.2.5 Sources ........................................ 222
5.2.6 Cryostats ...................................... 225
5.2.7 Emission-Based Techniques ...................... 229
5.3 Applications .......................................... 234
5.3.1 Magnetism ...................................... 234
5.3.2 Magnetic Reorientations ........................ 237
5.3.3 Crystal Fields ................................. 239
5.3.4 Phase Analysis ................................. 239
5.3.5 Amorphous Materials ............................ 241
5.3.6 Electronic Relaxation .......................... 245
5.3.7 Electronic Valence ............................. 245
5.3.8 Industrial Applications ........................ 248
5.4 Concluding Remarks .................................... 254
References ................................................. 254
6 Crystal Field Spectroscopy ................................. 257
Albert Furrer and Andrew Podlesnyak
6.1 Introduction .......................................... 257
6.2 The Crystal Field Interaction ......................... 259
6.2.1 Basic Formalism ................................ 259
6.2.2 Model Calculations of the Crystal Field
Interaction .................................... 263
6.2.3 Parametrization of the Crystal Field
Interaction .................................... 266
6.2.4 Extrapolation Schemes .......................... 267
6.2.5 Calculation of Thermodynamic Magnetic
Properties ..................................... 268
6.3 Experimental Techniques ............................... 268
6.3.1 Introductory Remarks ........................... 268
6.3.2 Neutron Spectroscopy ........................... 269
6.3.3 Raman Spectroscopy ............................. 276
6.3.4 Point-Contact Spectroscopy ..................... 278
6.4 Determination of Crystal Field Parameters from
Experimental Data ..................................... 280
6.4.1 A Simple Two-Parameter Crystal Field Problem ... 280
6.4.2 A Complicated Many-Parameter Crystal Field
Problem ........................................ 283
6.5 Interactions of Crystal Field Split Ions .............. 287
6.5.1 Introductory Remarks ........................... 287
6.5.2 Interaction with Phonons ....................... 287
6.5.3 Interaction with Conduction Electrons .......... 288
6.5.4 Magnetic Exchange Interaction .................. 290
6.6 Crystal Field Effects Related to High-Temperature
Superconductivity ..................................... 291
6.6.1 Introductory Remarks ........................... 291
6.6.2 The Crystal Field as a Local Probe: Evidence
for Materials Inhomogeneities .................. 292
6.6.3 Relaxation Phenomena to Probe the Pseudogap .... 297
6.7 Concluding Remarks .................................... 300
References ................................................. 301
7 Scanning Tunneling Spectroscopy (STS) ...................... 305
K.W.Hipps
7.1 Introduction .......................................... 305
7.2 The Scanning Tunneling Microscope (STM) ............... 307
7.2.1 Commercial Instruments ......................... 312
7.2.2 Tips ........................................... 313
7.3 Scanning Tunneling Spectroscopy (STS) of
Semiconductors and Metals ............................. 315
7.4 Electron Tunneling Spectroscopy of Adsorbed
Molecules ............................................. 319
7.5 Practical Considerations Relating to STM-IETS and
STM-OMTS .............................................. 326
7.5.1 STM-Based Orbital-Mediated Tunneling Spectra
and Electrochemistry ........................... 328
7.5.2 STM-Based OMTS and Ultraviolet Photoemission
Spectroscopy ................................... 332
7.5.3 OMTS as a Chemical Analysis Tool: Direct
Spectral Characterization ...................... 337
7.5.4 OMTS as a Chemical Analysis Tool: Bias-
Dependent Imaging .............................. 342
7.5.5 OMTS as a Submolecular Electron Transport
Mapping Tool ................................... 343
7.6 Some Concluding Points ................................ 345
References ................................................. 346
8 Resonance Acoustic Spectroscopy ............................ 351
Farhang Honarvar and Esmaeil Enjilela
8.1 Introduction .......................................... 351
8.2 Scattering of Waves ................................... 352
8.2.1 Physics of Acoustic Resonance Scattering ....... 352
8.2.2 Acoustic Wave Scattering from Elastic
Targets ........................................ 354
8.3 Mathematical Models ................................... 356
8.3.1 Resonance Scattering Theory (RST) ............... 368
8.4 Method of Isolation and Identification of Resonances
(MIIR) ................................................ 371
8.4.1 Introduction ................................... 371
8.4.2 Quasi-Harmonic MIIR ............................ 371
8.4.3 Short-Pulse MIIR ............................... 375
8.5 Experimental and Numerical Results .................... 377
8.5.1 Introduction ................................... 377
8.5.2 Characterization of Target Shape by RAS ........ 377
8.5.3 Material Characterization by Resonance
Acoustic Spectroscopy (MCRAS) .................. 381
8.5.4 Nondestructive Evaluation (NDE) of Clad Rods
by RAS ......................................... 385
8.5.5 Nondestructive Evaluation of Epon-815 Clad
Steel Rod by RAS ............................... 386
8.5.6 Characterization of Cladding Delamination ...... 388
8.5.7 Nondestructive Evaluation (NDE) of
Explosively Welded Clad Rods by RAS ............ 390
8.5.8 Nondestructive Evaluation of Fiber-Reinforced
Composite Rods ................................. 395
8.5.9 Nondestructive Evaluation of Continuously
Cast Rods by RAS ............................... 399
References ................................................. 407
9 Fourier Transform Infrared Spectroscopy .................... 411
Neena Jaggi and D.R. Vij
9.1 Introduction .......................................... 411
9.2 Historical Background ................................. 413
9.3 FT-IR Spectroscopy .................................... 416
9.3.1 Basic Integral Equation ........................ 417
9.3.2 Experimental Setup ............................. 419
9.3.3 Advantages ..................................... 421
9.3.4 Other Aspects .................................. 427
9.4 Applications .......................................... 436
9.4.1 Atmospheric Pollution .......................... 438
9.4.2 Study of Planetary Atmosphere .................. 440
9.4.3 Surface Studies ................................ 443
9.4.4 Characterization of Optical Fibers ............. 444
9.4.5 Vibrational Analysis of Molecules .............. 444
9.4.6 Study of Biological Molecules .................. 445
9.4.7 Study of Polymers .............................. 446
References ................................................. 447
10 Augei; Electron Spectroscopy ............................... 451
Richard P. Gunawardane and Christopher R. Arumainayagam
10.1 Introduction .......................................... 451
10.2 Historical Perspective ................................ 454
10.3 Basic Principles of AES ............................... 454
10.3.1 X-Ray Notation ................................. 454
10.3.2 Auger Transitions .............................. 455
10.3.3 Kinetic Energies of Auger Electrons ............ 457
10.4 Instrumentation ....................................... 459
10.4.1 Electron Optical Column ........................ 459
10.4.2 Ion Optical Column ............................. 461
10.4.3 Electron Energy Analyzers ...................... 462
10.4.4 Electron Detector .............................. 464
10.4.5 Computer Control and Data Display Systems ...... 464
10.5 Experimental Procedures Including Sample
Preparation ........................................... 465
10.5.1 Sample ......................................... 465
10.5.2 Beam Effects and Surface Damage ................ 465
10.5.3 AES Modifications and Combinations with
Other Techniques ............................... 466
10.6 Auger Spectra: Direct and Derivative Forms ............ 466
10.7 Applications .......................................... 468
10.7.1 Qualitative Analysis ........................... 468
10.7.2 Quantitative Analysis .......................... 468
10.7.3 Chemical Information ........................... 472
10.7.4 Auger Depth Profiling .......................... 473
10.7.5 Auger Images and Linescans ..................... 476
10.7.6 Research and Industry .......................... 477
10.8 Recent Advances ....................................... 479
10.8.1 Positron-Annihilation-Induced AES .............. 480
10.8.2 Auger Photoelectron Coincidence Spectroscopy ... 480
10.9 Conclusions ........................................... 481
References ................................................. 481
11 X-Ray Photoelectron Spectroscopy ........................... 485
Hsiao-Lu Lee and Nolan T. Flynn
11.1 Introduction and Basic Theory ......................... 485
11.2 Historical Perspective ................................ 486
11.3 Instrumentation ....................................... 486
11.3.1 Vacuum System .................................. 487
11.3.2 X-Ray Source ................................... 489
11.3.3 Electron Energy Analyzer ....................... 492
11.4 Sample Selection and Preparation ...................... 492
11.4.1 Sample Charging ................................ 493
11.4.2 X-Ray Beam Effects ............................. 495
11.5 Spectral Analysis ..................................... 496
11.5.1 Core Level Splitting ........................... 498
11.5.2 Linewidths ..................................... 500
11.5.3 Elemental Analysis: Qualitative and
Quantitative ................................... 500
11.5.4 Secondary Structure ............................ 501
11.6 XPS Imaging ........................................... 502
11.7 Angle-Resolved XPS .................................... 504
11.8 Recent Advances and Applications ...................... 504
11.9 Conclusions ........................................... 506
References ................................................. 506
12 Luminescence Spectroscopy .................................. 509
Baldassare Di Bartolo and John Collins
12.1 Introduction .......................................... 509
12.1.1 Basic Concepts ................................. 509
12.1.2 History ........................................ 510
12.2 Spontaneous Emission, Absorption, and Induced
Emission .............................................. 511
12.2.1 Classical Bound, Radiating Electron ............ 511
12.2.2 Quantum Mechanical Radiative Decay ............. 513
12.2.3 Absorption and Emission ........................ 516
12.2.4 Absorption Coefficient and Absorption Cross-
Section ........................................ 518
12.3 Measurements and Techniques ........................... 519
12.3.1 Absorption Spectra ............................. 519
12.3.2 Luminescence Spectra ........................... 521
12.3.3 Excitation Spectra ............................. 522
12.3.4 Responses to Pulsed Excitation ................. 522
12.4 Localized Systems ..................................... 523
12.4.1 Introduction ................................... 523
12.4.2 The Hamiltonian of an Ion in a Solid ........... 524
12.4.3 Rare Earth Ions in Solids ...................... 524
12.4.4 Transition Metal Ions in Solids ................ 528
12.4.5 Color Centers in Solids ........................ 535
12.5 Processes in Localized System Service ................. 539
12.5.1 Introduction ................................... 539
12.5.2 Radiative Decay ................................ 540
12.5.3 Multiphonon Decay .............................. 542
12.5.4 Vibronic Transitions ........................... 545
12.5.5 Energy Transfer ................................ 547
12.5.6 Upconversion ................................... 548
12.5.7 Line Broadening and Shifting with
Temperature .................................... 549
12.6 Delocalized Systems ................................... 551
12.6.1 Density of One-Electron States and Fermi
Probability Distribution ....................... 551
12.6.2 Classification of Crystalline Solids ........... 552
12.6.3 Intrinsic Semiconductors ....................... 554
12.6.4 Doped Semiconductors ........................... 556
12.6.5 Model for a Doped Semiconductor ................ 557
12.7 Processes in Delocalized Systems ...................... 560
12.7.1 Direct Gap and Indirect Gap Semiconductors ..... 560
12.7.2 Excitation in Insulators and Large Band Gap
Semiconductors ................................. 561
12.7.3 Radiative Transitions in Pure Semiconductors ... 562
12.7.4 Doped Semiconductors ........................... 564
12.7.5 Radiative Transitions Across the Band Gap ...... 565
12.7.6 Non-Radiative Processes ........................ 566
12.7.7 p-n Junctions .................................. 567
12.8 Direction of Future Efforts ........................... 571
12.8.1 Why Luminescence? .............................. 571
12.8.2 Challenges and Future Work ..................... 571
References ................................................. 574
Bibliography ............................................... 575
13 Laser-Induced Fluorescence Spectroscopy .................... 577
G. Geipel
13.1 Introduction .......................................... 577
13.2 Experimental Setup .................................... 578
13.3 Fluorescence Spectroscopy of Minerals ................. 579
13.4 Fluorescence Spectroscopy of Surface Species and in
Solid Phases .......................................... 584
13.5 Fluorescence Spectroscopy of Frozen Samples ........... 586
13.6 Fluorescence Spectroscopy of Non-Actinide Solid
Matrices .............................................. 589
13.7 Outlook ............................................... 591
References ................................................. 591
14 Soft X-Ray Emission and Resonant Inelastic Scattering
Spectroscopy ............................................... 595
E.J. Nordgren, S.M. Butorin, L.C. Duda, and J.-H. Guo
14.1 Introduction .......................................... 595
14.2 Properties of X-Ray Spectra ........................... 597
14.3 Resonant Inelastic X-Ray Scattering ................... 602
14.4 Experimental Techniques ............................... 605
14.4.1 Grating Spectrometers for Soft X-Ray
Emission ....................................... 605
14.4.2 Samples at Ambient Conditions .................. 608
14.5 Applications .......................................... 609
14.5.1 Surfaces, Interfaces, and Thin Films ........... 609
14.5.2 Nano Structures ................................ 615
14.5.3 Transition Metal Systems ....................... 619
14.6 Summary ............................................... 654
References ................................................. 654
15 Laser Raman Spectroscopy ................................... 661
Alfons Schulte and Yu Guo
15.1 Introduction .......................................... 661
15.2 Spontaneous Raman Scattering .......................... 663
15.3 Experimental Approaches ............................... 666
15.4 Applications .......................................... 670
15.4.1 Glasses for Raman Gain ......................... 671
15.4.2 Chalcogenide Glasses ........................... 673
15.4.3 Chalcogenide Thin Films—Waveguide Raman ........ 675
15.4.3 High-Pressure Raman Spectroscopy of Proteins ... 677
15.4.4 Micro-Raman Spectroscopy ....................... 680
15.5 Conclusions and Outlook ............................... 685
References ................................................. 685
16 Polarization Spectroscopy of Ordered Samples ............... 689
Peter W. Thulstrup and Erik W. Thulstrup
16.1 Introduction .......................................... 689
16.1.1 Linearly Polarized Light ....................... 689
16.1.2 Transition Moment Directions ................... 690
16.1.3 Spectroscopy with Linearly Polarized Light ..... 694
16.2 Occurrence, Production, and Optical Properties
of Aligned Solid Samples .............................. 696
16.2.1 Perfectly and Partially Aligned Samples ........ 696
16.2.2 Solutes in Partially Aligning Solvents ......... 697
16.3 One-Photon Spectroscopy: Linear Dichroism ............. 699
16.3.1 Optical Spectroscopy with Linearly Polarized
Light: Experimental Needs ...................... 699
16.3.2 Mathematical Descriptions of Aligned,
Uniaxial Samples ............................... 700
16.3.3 LD Spectra of Aligned, Uniaxial Samples ........ 702
16.3.4 Transition Moment Directions and Reduced
Spectra: Symmetrical Molecules ................. 704
16.3.5 Transition Moment Directions: Molecules
of Lower Symmetry .............................. 715
16.3.6 Non-Uniaxial Samples ........................... 720
16.4 Two-Photon Spectroscopy ............................... 721
16.5 Conclusions ........................................... 726
References ................................................. 726
|