Rusev R. Classical orthogonal polynomials and their associated functions in complex domain (Sofia, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRusev R. Classical orthogonal polynomials and their associated functions in complex domain. - Sofia: Marin Drinov Academic Publishing House, 2005. - 278 p. - (Bulgarian Academic Monographs; 10). - Ref.: p.263-271. - Auth. ind.: p.272-274. - Sub. ind.: p.273-278. - ISBN 954-430-322-045-X
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
PREFACE ......................................................... 1

CHAPTER I.   Jacobi, Laguerre and Hermite polynomials and
             associated functions ............................... 5

1. Pearson's differential equation .............................. 5
2. Definition of Jacobi, Laguerre and Hermite polynomials ...... 10
3. Orthogonality. Recurrence relations ......................... 12
4. Jacobi, Laguerre and Hermite associated functions.
   Christoffel-Darboux type formulas ........................... 24
5. Relations to hypergeometric and Weber-Hermite functions ..... 31
Exercises ...................................................... 37
Comments and references ........................................ 42

CHAPTER II.  Integral representations and generating
             functions ......................................... 43

1. Integral representations and generating functions for
   Jacobi polynomials .......................................... 43
2. Integral representations and generating functions for
   Laguerre polynomials and associated functions ............... 46
3. Integral representations and generating functions for
   Hermite polynomials and associated functions ................ 53
Exercises ...................................................... 56
Comments and references ........................................ 57

CHAPTER III. Asymptotic formulas. Inequalities ................. 58

1. Asymptotic formulas for Jacobi polynomials and associated
   functions ................................................... 58
2. Asymptotic formulas for Hermite and Laguerre polynomials .... 67
3. Asymptotic formulas for Laguerre and Hermite associated
   functions ................................................... 75
4. Inequalities for Laguerre and Hermite polynomials ........... 82
5. Inequalities for Laguerre and Hermite associated 
   functions ................................................... 86
Exercises ...................................................... 88
Comments and references ........................................ 89

CHAPTER IV.  Convergence of series in Jacobi, Laguerre and
             Hermite systems ................................... 92

1. Series in Jacobi polynomials and associated functions ....... 92
2. Series in Laguerre polynomials and associated functions ..... 94
3. Series in Hermite polynomials and associated functions ...... 98
4. Theorems of Abelian type .................................... 99
5. Uniqueness of the representations by series in Jacobi,
   Laguerre and Hermite polynomials and associated 
   functions .................................................. 103
Exercises ..................................................... 108
Comments and references ....................................... 109

CHAPTER V.   Series representation of holomorphic functions
             by Jacobi, Laguerre and Hermite sysems ........... 1l1

1. Expansions in series of Jacobi polynomials ans associated
   functions .................................................. 111
2. Expansions in series of Hermite polynomials ................ 115
3. Expansions in series of Laguerre polynomials ............... 129
4. Representations by series in Laguerre and Hermite
   associated functions ....................................... 147
5. Holomorphic extension ...................................... 152
Exercises ..................................................... 160
Comments and references ....................................... 162

CHAPTER VI.  The representation problem in terms of 
             classical integral transforms .................... 165

1. Hankel transform and the representation by series in
   Laguerre polynomials ....................................... 165
2. Meijer transform and the representation by series in 
   Laguerre associated functions .............................. 171
3. Laplace transform and the representation by series in 
   Laguerre associated functions .............................. 177
4. Fourier transform and the representation by series in
   Hermite polynomials and associated functions ............... 183
5. Representation of entire functions of exponential type
   by series in Laguerre and Hermite polynomials .............. 185
Exercises ..................................................... 188
Comments and References ....................................... 189

CHAPTER VII. Boundary properties of series in Jacobi, 
             Laguerre and Hermite systems ..................... 191

1. Convergence on the boundaries of convergence regions ....... 191
2. (C,δ)-summability on the boundaries of convergence
    regions ................................................... 205
3. Fatou type theorems ........................................ 221
Exercises ..................................................... 226
Comments and references ....................................... 228

ADDENDUM.   A review on singular points and analytical
            continuation of series in classical orthogonal 
            polynomials ....................................... 231

1. Singular points and analytical continuation of series
   in Jacobi polynomials ...................................... 231
2. Singular points and analytical continuation of series
   in Hermite polynomials ..................................... 236
3. Singular points and analytical continuation of series
   in Laguerre polynomials .................................... 241
4. Gap theorems and overconvergence ........................... 244
Comments and references ....................................... 249

APPENDIX.   A short survey on special functions ............... 252

1. Gamma-function ............................................. 252
2. Bessel functions ........................................... 254
3. Hypergeometric functions ................................... 257
4. Weber-Hermite functions .................................... 261
Comments and references ....................................... 262

REFERENCES .................................................... 263
AUTHOR INDEX .................................................. 272
SUBJECT INDEX ................................................. 275


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:50 2019. Размер: 10,101 bytes.
Посещение N 2299 c 24.02.2010