Forschungsbericht; 09-09 (Koln, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHoque M.M. Higher order ionospheric propagation effects and their corrections in precise GNSS positioning / Deutsches Zentrum für Luft- und Raumfahrt Institut für Kommunikation und Navigation, Neustrelitz. - Köln: DLR, Bibliotheks- und Informationswesen, 2009. - xii, 235 p.: ill. - (Forschungsbericht; 09-09). - ISSN 1434-8454
 

Оглавление / Contents
 
1  INTRODUCTION ................................................. 1
   1.1  Motivation .............................................. 1
   1.2  Structure of this thesis ................................ 2
   1.3  Concept of satellite positioning ........................ 3
   1.4  GPS overview ............................................ 4
        1.4.1  GPS constellation ................................ 4
        1.4.2  GPS signal ....................................... 5
        1.4.3  Calculating position ............................. 7
        1.4.4  Error sources and accuracy ....................... 7
        1.4.5  GPS modernizations ............................... 9
   1.5  The European program for global navigation services,
        Galileo ................................................ 10
        1.5.1  Galileo signal .................................. 11
        1.5.2  Availability .................................... 12
2  RADIO WAVE PROPAGATION IN THE IONOSPHERE .................... 13
   2.1  Propagation in a dispersive medium ..................... 13
   2.2  Propagation in an anisotropic medium ................... 14
   2.3  Wave polarization ...................................... 16
   2.4  Plasma and gyro frequencies ............................ 16
   2.5  Ray path equation by Bouguer's law ..................... 17
   2.6  Geometric distance or true range ....................... 18
   2.7  Ionospheric refractive index ........................... 19
   2.8  Ionospheric phase and group delay ...................... 21
   2.9  Dual-frequency observables ............................. 22
   2.10 Comparison of higher order ionospheric terms ........... 25
3  ELECTRON DENSITY AND GEOMAGNETIC FIELD MODEL ................ 27
   3.1  Characteristics of the ionosphere ...................... 27
   3.2  Chapman layer .......................................... 29
   3.3  Simulation bed: ionosphere model with a broader
        variety of profile shapes .............................. 30
        3.3.1  Multi-layered ionosphere ........................ 30
        3.3.2  Comparison with CHAMP reconstructed profiles .... 33
   3.4  Integration of Chapman layer to calculate TEC .......... 34
   3.5  Parabolic and quasi parabolic (QP) layer ............... 37
        3.5.1  Parameter determination of a QP layer ........... 39
   3.6  Multi quasi parabolic (MQP) fitting .................... 39
   3.7  CHAMP vertical profile ................................. 41
   3.8  Geomagnetic field model: ICRF .......................... 42
4  RAY TRACING THROUGH THE IONOSPHERE .......................... 45
   4.1  Introduction ........................................... 45
   4.2  Ray tracing algorithm .................................. 45
   4.3  Ray direction in the ionosphere ........................ 51
   4.4  Homing-in method ....................................... 53
        4.4.1  Nelder-Mead simplex algorithm ................... 53
   4.5  Validation of ray tracing results ...................... 54
        4.5.1  Step size and computational error ............... 54
        4.5.2  Comparison with Bmnner and Gu results ........... 55
5  SECOND ORDER IONOSPHERIC TERM AND ITS CORRECTION ............ 58
   5.1  Introduction ........................................... 58
   5.2  Magneto-ionic effect or second order ionospheric
        delay .................................................. 58
   5.3  Dual-frequency second order residual error Δs2 ......... 59
   5.4  Second order delay and its correction for GNSS users
        in Germany ............................................. 59
        5.4.1  Second order term correction .................... 63
        5.4.2  Validation of the correction formula ............ 65
        5.4.3  Δs2 map over Germany ............................ 66
   5.5  Global Δs2 variation at zenith ......................... 66
   5.6  Δs2 variation at geomagnetic conjugate points .......... 67
   5.7  Second order term and its correction for GNSS users
        in Europe .............................................. 69
        5.7.1  Δs2 correction: computing average magnetic
               field component B cos Θ ......................... 69
        5.7.2  Two-circle-approximation and parameter
               determination ................................... 71
        5.7.3  Model formulation ............................... 73
        5.7.4  Model errors .................................... 75
   5.8  Second order delay and its correction for GNSS users
        in south-east Asia ..................................... 78
        5.8.1  The correction formula .......................... 80
        5.8.2  Validation ...................................... 80
   5.9  Error in case of computing B cos Θ at ionospheric
        pierce point ........................................... 82
6  THIRD ORDER IONOSPHERIC TERM AND ITS CORRECTION ............. 88
   6.1  Third order phase delay ................................ 88
   6.2  Dual-frequency third order residual error Δs3 .......... 89
   6.3  Third order delay correction ........................... 91
        6.3.1  Dual-frequency residual error correction ........ 95
7  EXCESS PATH LENGTH AND ITS CORRECTION ....................... 97
   7.1  Excess path length (arc-to-chord) ...................... 97
   7.2  The correction formula ................................ 100
   7.3  Alternative correction formula ........................ 102
   7.4  Dual-frequency residual error due to excess path
        Δsb(length) ............................................. 105
   7.5  Ray path deviation from the vacuum path ............... 106
8  RANGE ERROR DUE TO TEC DIFFERENCE AT TWO FREQUENCIES AND
   ITS CORRECTION ............................................. 110
   8.1  Introduction .......................................... 110
   8.2  TEC difference between L1 and L2 signal paths ......... 110
   8.3  Reasons of high TEC difference between L1 and L2
        paths ................................................. 112
   8.4  Range error due to TEC difference between L1 and L2
        paths ................................................. 114
   8.5  Analytical solution of TEC difference ................. 115
   8.6  Δsb(TEC) correction using the analytical solution ...... 119
   8.7  Empirical formula for TEC difference .................. 120
   8.8  Validation of empirical formula ....................... 121
9  EFFECTS OF HORIZONTAL GRADIENTS ............................ 124
   9.1  Introduction .......................................... 124
   9.2  Ionospheric model with horizontal gradients ........... 124
   9.3  Effects of horizontal gradients on  Δs2 ............... 125
   9.4  Effects of horizontal gradients on Δs3 ................ 127
   9.5  Effects of horizontal gradients on Δsb(length) .......... 128
   9.6  Effects of horizontal gradients on Δsb(TEC) ............ 129
10 HIGHER ORDER IONOSPHERIC EFFECTS ON USER POSITION .......... 131
   10.1 Range computation using carrier-phase measurements .... 131
   10.2 Position error computation using point positioning
        technique ............................................. 132
   10.3 Positioning improvements of higher order
        corrections ........................................... 133
        10.3.1 User position in northern hemisphere ........... 133
        10.3.2 User position in southern hemisphere ........... 135
   10.4 Performance of correction formulas .................... 137
11 REFRACTION OF GPS SIGNALS DURING RADIO OCCULTATION ......... 140
   11.1 Introduction .......................................... 140
   11.2 Occultation geometry and ray path deviation ........... 140
   11.3 Refractions during CHAMP-CPS occultation .............. 142
   11.4 Refraction effects using CHAMP vertical profile ....... 144
        11.4.1 Case study I ................................... 145
        11.4.2 Case study II .................................. 149
   11.5 Excess path length formula ............................ 152
   11.6 Refraction effects on signals received on LEO
        satellites at 200 km height ........................... 158
12 FARADAY ROTATION CORRECTION IN SAR INTERFEROMETRY .......... 160
   12.1 SAR principle ......................................... 160
   12.2 Ionospheric Faraday rotation .......................... 161
   12.3 Correction formula .................................... 162
   12.4 Validation of correction formula ...................... 163
13 MODERNIZED GPS AND FUTURE GALILEO SYSTEMS .................. 167
   13.1 Triple-frequency combination for range estimation ..... 167
   13.2 Triple-frequency residual error ....................... 169
   13.3 Triple-frequency error correction ..................... 170
        13.3.1 Residual error (Δsb(TEC))tr correction ........... 170
        13.3.2 Residual error (Δs3)tr correction .............. 171
        13.3.3 Excess path length (Δsb(length))tr correction .... 171
   13.4 Validation of correction formulas ..................... 172
   13.5 Quadruple-frequency combination for range
        estimation ............................................ 173
   13.6 Quadruple-frequency residual error .................... 175
   13.7 Residual error for new dual-frequency combinations .... 176
14 CONCLUSIONS ................................................ 180
   14.1 Concluding remarks .................................... 180
        14.1.1 Second order ionospheric term .................. 180
        14.1.2 Third order ionospheric term ................... 181
        14.1.3 Excess path length ............................. 181
        14.1.4 Range error due to TEC difference between L1
               and L2 signal paths ............................ 181
        14.1.5 Higher order effects considering horizontal
               gradients ...................................... 181
        14.1.6 Higher order ionospheric effects on user
               position ....................................... 182
        14.1.7 Refraction effects during GPS occultation ...... 182
        14.1.8 Higher order effects in triple- and
               quadruple-frequency measurements ............... 182
   14.2 Future work ........................................... 183

REFERENCES .................................................... 185

APPENDIX A: CONVERSION OF EARTH'S MAGNETIC FIELD COMPONENTS:
   GEODETIC TO 3D CARTESIAN COORDINATE SYSTEM ................. 194
APPENDIX B: PROJECTION OF VECTORS ON A PLANE .................. 198
APPENDIX C: DERIVATION OF TEC DIFFERENCE BETWEEN TWO GNSS
   SIGNAL PATHS ............................................... 199
APPENDIX D: DERIVATION OF TEC EXPRESSION AT ZENITH AND OTHER
   ELEVATION ANGLES ........................................... 206
APPENDIX E: DERIVATION OF ∫n2edl AT ZENITH AND OTHER
   ELEVATION ANGLES ........................................... 213
APPENDIX F: TEC DERIVATIVE WITH RESPECT TO RECEIVER HEIGHT .... 216
APPENDIX G: POINT POSITIONING TECHNIQUE: LINEARISED MODEL ..... 221

LIST OF ACRONYMS .............................................. 223
LIST OF SYMBOLS ............................................... 225
LIST OF FIGURES ............................................... 228
LIST OF TABLES ................................................ 234


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:50 2019. Размер: 15,668 bytes.
Посещение N 2116 c 16.02.2010