Prace Naukowe Uniwersytetu Slaskiego w Katowicach; N 1668 (Katowice, 1997). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKotarski W. Some problem of optimal and Pareto optimal control for distributed parameter systems. - Katowice: Wydawinictwo Uniwersytetu Śląskiego, 1997. - 93 p.: ill. - (Prace Naukowe Uniwersytetu Śląskiego w Katowicach; N 1668). - Ref.: p.87-87. - Ind.: p.89. - ISBN 83-226-0766-0; ISSN 0208-6336
 

Оглавление / Contents
 
Preface ......................................................... 7

Chapter 1. Some generalizations of the Dubovitskii-Milyutin
           method ............................................... 9

1.1  Introductory remarks ....................................... 9
1.2  Definitions of cones. Separation theorem .................. 11
1.3  Statement of Pareto optimal problems ...................... 14
1.4  Necessary conditions for local Pareto optimum. 
     Generalized Dubovitskii-Milyutin theorem .................. 15
1.5  Necessary and sufficient conditions for global Pareto
     optimum ................................................... 19
1.6  Problem "scalarization" ................................... 22
1.7  The Salukwadze optimum .................................... 24
1.8  Case s = 1 ................................................ 26

Chapter 2. Optimal control of parabolic systems ................ 28

2.1  Pareto optimal control problem for a cascade of 
     parabolic systems ......................................... 28
2.2  Quadratic Pareto optimal control for a parabolic 
     equation .................................................. 35
2.3  Optimal control problems with non-standard functionals
     and time delay ............................................ 41
     2.3.1  Parabolic equation with time delay ................. 42
     2.3.2  Statement of optimal control problem. Optimality
            conditions ......................................... 43

Chapter 3. Optimal control of systems with infinite number
           of variables ........................................ 50

3.1  Introductory remarks ...................................... 50
     3.1.1  Some functional spaces ............................. 50
     3.1.2  Petrowsky type equation with an infinite number
            of variables ....................................... 52
3.2  Optimal control problem for Petrowsky type equation.
     Optimality conditions ..................................... 53
3.3  Time-optimal control problem for parabolic equations ...... 59
     3.3.1  An equivalent optimization problem ................. 59
     3.3.2  Optimality conditions .............................. 60

Chapter 4. Numerical example ................................... 65

4.1  Problem statement ......................................... 65
4.2  Projective gradient method ................................ 67
4.3  Application of projective gradient method to optimal
     control problem ........................................... 67
4.4  Approximation of optimal control problem .................. 68
4.5  Numerical results ......................................... 70
Final remarks .................................................. 72

Appendix A. Programs in MAPLE V ................................ 73

     A.l  Program PARETOl.MS ................................... 74
     A.2  Program PARETO2.MS ................................... 78

References ..................................................... 84

Index .......................................................... 89

Streszczenie ................................................... 90

Резюме ......................................................... 92


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:46 2019. Размер: 7,032 bytes.
Посещение N 2199 c 02.02.2010