Bonner Mathematische Schriften; 393 (Bonn, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBonner Mathematische Schriften. Vol.393: Generalized Snaith Splittings: Diss. … Dr. rer. nat. / Wang J. - Bonn: Rheinische Friedrich - Wilhelms - Universität, 2009. - iv, 85 p. - Bibliogr.: p.83-85. - ISSN 0524-045X
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1  Introduction ................................................. 1
2  Segal Г-Spaces ............................................... 9
   2.1  Segal Г-Spaces - a Covariant Version .................... 9
   2.2  Segal Г-Spaces Arising From Categories ................. 11
   2.3  Segal Г-Spaces and Spectra ............................. 12
3  Infinite Symmetric Products and Singular Homology ........... 17
   3.1  Definition ............................................. 17
   3.2  Dold-Thom Theorem and Dold-Puppe Splitting ............. 19
   3.3  Generalized Symmetric Product .......................... 21
   3.4  Splitting of SP fig.1n ..................................... 22
   3.5  Splitting of SP fig.1 ...................................... 25
4  Configuration Spaces and Stable Homotopy Theory ............. 27
   4.1  Properties of Configurations and Examples .............. 27
   4.2  Braid Groups ........................................... 28
   4.3  Snaith Splitting and Stable Homotopy Theory ............ 29
   4.4  Г-spaces arising from fig.6(fig.5fig.2) ........................... 35
5  Grassmannians and Connective K-Theory ....................... 37
   5.1  Connective K-Homology Theory ........................... 37
   5.2  The Sheaf of Parameterized Embeddings .................. 41
        5.2.1  Topology on the Sheaf Bd(-; Y) .................. 41
        5.2.2  Section Space Sectd(M; Y+) ...................... 49
        5.2.3  A Scanning Construction for the Thom Spectrum
               МТОd ............................................ 50
   5.3  Splitting of the Functor К ............................. 55
        5.3.1  Homotopy Type of the Splitting Space fig.3(Y+) ...... 55
        5.3.2  Proof of the Main Theorem ....................... 57
6  Splitting of Segal Г-Spaces ................................. 65
   6.1  Weight Filtration of fig.4(X) ............................. 65
   6.2  Duality Theorem ........................................ 67
   6.3  Splitting Spaces ....................................... 68
   6.4  Splitting of Segal Г-Spaces ............................ 69
   6.5  Homotopy Calculus of Segal Г-Spaces .................... 71

Аppendices ..................................................... 74
   Gromov's h-principle ........................................ 75
   Homotopy Calculus of Functors: an Overview .................. 79

Вibliography ................................................... 83


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:44 2019. Размер: 6,334 bytes.
Посещение N 2085 c 22.12.2009