Popivanov P. Geometrical methods for solving of fully nonlinear partial differential equations (Sofia, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPopivanov P. Geometrical methods for solving of fully nonlinear partial differential equations. - Sofia: Union of Bulgarian Mathematicians, 2006. - x, 158 p.: ill. - (Mathematics and its applications). - Ref.: p.153-156. - Ind.: p.157-158. - ISBN-10 954-8880-24-5; ISBN-13 978-954-8880-24-4
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... vii

1  Some auxiliary results from the differential geometry ....... 1
2  Cauchy method and envelope method for integration of
   first order fully nonlinear partial differential 
   equations .................................................. 21
   2.1  On the Cauchy problem for the Burgers-Hopf equation ... 21
   2.2  First integrals of systems of ordinary differential
        equations ............................................. 25
   2.3  Fully nonlinear PDE of first order. Cauchy method ..... 26
   2.4  Complete, general and singular integrals of first
        order nonlinear PDE. Applications to the Cauchy 
        problem. Method of the envelopes ...................... 44
   2.5  Lagrange-Charpit method for finding out of complete
        integrals ............................................. 51
3  Some applications of first order nonlinear PDE to
   mechanics and geometry ..................................... 67
   3.1  Canonical transformations and equations of the
        Hamilton-Jacobi type .................................. 67
   3.2  Complete integrals and envelopes in the 
        multidimensional case. Solvability of the Cauchy
        problem ............................................... 70
   3.3  On the integrability of the canonical Hamilton 
        systems ............................................... 73
   3.4  An application of first order nonlinear PDE to 
        the geodesies in the differential geometry ............ 80
4  Cauchy problem for Monge-Ampere type partial differential
   equations .................................................. 85
   4.1  Characteristics for second order nonlinear PDE ........ 85
   4.2  Characteristics for Monge-Ampere type PDE ............. 87
   4.3  Cauchy problem for the hyperbolic equations of 
        Monge-Ampere type. Geometrical approach ............... 90
   4.4  Proof of Theorem 4.1 .................................. 94
5  Characteristics of quasilinear hyperbolic systems in
   the hodograph plane and applications to mechanics ......... 101
   5.1  Introduction ......................................... 101
   5.2  Epicycloids and their properties ..................... 101
   5.3  First order ODE satisfied by the arcs of the 
        epicycloid ........................................... 104
   5.4  Characteristics of some classes of quasilinear 
        first order hyperbolic systems in the hodograph
        plane. Epicycloids and applications to mechanics ..... 108
6  Examples of anomalous singularities of the solutions to
   some classes of weakly hyperbolic semilinear systems in
   the plane ................................................. 115
   6.1  Introduction ......................................... 115
   6.2  Formulation and proof of the main results ............ 115
7  Lorentz transformations and creation of logarithmic
   singularities to the solutions of some nonstrictly
   hyperbolic semilinear systems with two space variables .... 125
   7.1  Introduction ......................................... 125
   7.2  Statement of the problem and formulation of the
        main results ......................................... 126
   7.3  Some preliminary notes ............................... 127
   7.4  Lorentz transformations applied to some hyperbolic
        equations ............................................ 129
   7.5  Proof of the main Theorem 7.1 ........................ 137

Appendix ..................................................... 143

References ................................................... 153

Index ........................................................ 157


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:44 2019. Размер: 7,500 bytes.
Посещение N 2346 c 22.12.2009