Numerical solution of partial differential equations: proceedings of a symposium held at the University of Maryland (New York; London, 1966). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNumerical solution of partial differential equations: proceedings of a symposium held at the University of Maryland, College Park, Maryland, may 3 - 8, 1965 / ed. by Bramble J.H. - New York; London: Academic Press, 1966. - xv, 373 p: ill.
 

Оглавление / Contents
 
List of Contributors ............................................ v
Preface ....................................................... vii

A Finite Difference Scheme for Generalized Neumann Problems
   K.O. Friedrichs and H.B. Keller

1  Introduction ................................................. 1
2  The Difference Method and Convergence for the Neumann 
   Problem ...................................................... 2
3  The Finite Difference Equations .............................. 7
4  Interpretation of the Finite Difference Equations ........... 10
5  Systems with Variable Coefficients .......................... 13
References ..................................................... 19

Remarks on the Order of Convergence in the Discrete Dirichlet
Problem
   Bert Hubbard

1  Introduction ................................................ 21
2  Definitions ................................................. 22
3  The Dirichlet Problem ....................................... 24
4  Estimates for Derivatives (Richardson's Method) ............. 28
5  Problems with Singularities (Exterior Problems) ............. 31
References ..................................................... 34

Fluid Dynamical Calculations
   Eugene Isaacson

1  Introduction ................................................ 35
2  Motion of Cold Fronts ....................................... 35
3  Flood Waves in Rivers ....................................... 42
4  Summary and Acknowledgments ................................. 48
References ..................................................... 48

Difference Approximations for Hyperbolic Differential
Equations
   Heinz-Otto Kreiss

1  Cauchy Problem .............................................. 51
2  Initial-Boundary Value Problem .............................. 54
References ..................................................... 57

Discrete Methods for Nonlinear Two-Point Boundary Value 
Problems
   Milton Lees

1  Introduction ................................................ 59
2  A Discrete Boundary Value Problem ........................... 63
3  Newton's Method ............................................. 67
4  The Difference Correction ................................... 69
References ..................................................... 72

Remarks on the Numerical Computation of Solutions
of Δ = ƒ(P, u)
   Seymour V. Parter

1  Introduction ................................................ 73
2  Analytic Preliminaries ...................................... 73
3  Finite-Difference Equations ................................. 76
4  Convergence Theorems ........................................ 79
References ..................................................... 82

Error Bounds Based on A Priori Inequalities
   Lawrence E. Payne

1  Introduction ................................................ 83
2  A Priori Bounds ............................................. 83
References ..................................................... 92

On Admissibility in Representations of Functions of Several
Variables as Finite Sums of Functions of One Variable
   David A. Sprecher

1  Introduction and Summary .................................... 95
2  On Separation of Points ..................................... 98
3  A Partition of Functions ................................... 103
4  The Problem of Admissibility ............................... 105
References .................................................... 108

Stability of Nonlinear Discretization Algorithms
   Hans J. Stetter

Text .......................................................... 111
References .................................................... 123

On Maximum-Norm Stable Difference Operators
   Vidar Thomee

Text .......................................................... 125
References .................................................... 151

A Posteriori Error Bounds in Iterative Matrix Inversion
   H.F. Weinberger

1  Introduction ............................................... 153
2  The Symmetric Case ......................................... 156
3  Some Numerical Results ..................................... 159
4  An Improved Approximation .................................. 161
5  Remarks on Nonsymmetric Matrices ........................... 163
References .................................................... 163

Finite Difference Methods for Solving Systems of Partial
Differential Equations
   J. Flügge-Lotz

Text .......................................................... 165

Some Numerical Results in Intermediate Problems for 
Eigenvalues
   A. Weinstein

Text .......................................................... 167
References .................................................... 189

Stability of Linear and Nonlinear Difference Schemes
   Peter D. Lax

Text .......................................................... 193
References .................................................... 195

The Solutions of Multidimensional Generalized Transport 
Equations and Their Calculation by Difference Methods
   Avron Douglis

Introduction .................................................. 197
1  Statement of Problem; Notation; Minimal Assumptions ........ 197
2  Reduction of Problem to an Integral Equation ............... 202
3  Some Appropriate Function Spaces ........................... 208
4  Continuous Dependence, Uniqueness, and Existence ........... 210
5  A Priori Lipschitz Conditions for Weak Solutions; 
   Lipschitz Condition with Respect to г ...................... 216
6  An A Priori Lipschitz Condition for и with Respect to 
   the x8, s = 1, ..., d ...................................... 221
7  Determination and Behavior of t* and x* .................... 224
8  Proofs of Auxiliary Estimates .............................. 229
9  Positivity and Monotonic Dependence ........................ 237
10 Truncation ................................................. 239
11 Difference Scheme Notation; Some Remarks ................... 242
12 Statement of Difference Equations .......................... 246
13 Outline of Convergence Proof ............................... 249
14 A Bound for the Solution of the Difference Equations and
   an Estimate for Its t Difference Quotients ................. 250
15 Boundary Behavior .......................................... 252
16 Lipschitz Conditions in Truncated Problems ................. 253
References .................................................... 256

Application of Integral Operators to Singular Differential
Equations and to Computations of Compressible Fluid Flows
   Stefan Bergman

1  Introduction ............................................... 257
2  The Integral Operator Generating Solutions of Eq. (1.1) .... 259
3  The Equation for the Stream Function ф of Compressible 
   Fluid in the Pseudo-logarithmic Plane ...................... 268
4  A Set Ψν,ν = 1, 2, . . . , of Particular Solutions of Eq. 
   (3.3) Obtained Using the Generating Function (3.13) ........ 276
5  Remarks on Application of Integral Operators for 
   Numerical Purposes ......................................... 280
References .................................................... 283

Numerical Solution of the Telegraph and Related Equations
   Garrett Birkhoff and Robert E. Lynch

   A  Introduction
1  Telegraph Equation ......................................... 289
2  Infinitesimal Amplification Factors ........................ 291
3  Relevant Difference Schemes ................................ 293
   B  Thermal Transients in Reactor Channels
4  Physical Problem ........................................... 295
5  Simplified Model ........................................... 296
6  Conduction Equation ........................................ 297
7  Convection Equation ........................................ 298
   C  Regenerator Problems
8  The Mathematical Model ..................................... 301
9  Asymptotic Discussion ...................................... 303
10 Moments .................................................... 304
11 Characteristic Triangular Meshes ........................... 308
   D  Generalizations
12 Hyperbolic Systems of Positive Type ........................ 309
13 Asymptotic Behavior ........................................ 312
References .................................................... 314

Approximation and Estimates for Eigenvalues
   Gaetano Fichera

1  Eigenvalue Problems, the Rayleigh-Ritz Method .............. 318
2  The Weinstein-Aronszajn Method ............................. 323
3  Construction of the Intermediate Operators ................. 328
4  Orthogonal Invariants of Positive Compact Operators ........ 332
5  Upper Approximation of the Eigenvalues of a PCO; 
   Representation of Orthogonal Invariants .................... 338
Bibliography .................................................. 351

Approximate Continuation of Harmonic and Parabolic Functions
   Jim Douglas, Jr.

1  Introduction ............................................... 353
2  Harmonic Continuation in a Disk ............................ 353
3  Harmonic Continuation in a Half-Plane ...................... 360
4  Continuation of Solutions of the Heat Equation ............. 361
References .................................................... 363

Hermite Interpolation-Type Ritz Methods for Two-Point
Boundary Value Problems
   Richard S. Varga

1  Introduction ............................................... 365
2  The Spaces H(m)N and H ...................................... 365
3  Accuracy ................................................... 367
4  Determination of the Best Approximation in H(m)N ............ 369
5  Connection with Other Methods .............................. 370
6  A Posteriori Error Bounds and Spines ....................... 372
References .................................................... 373


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:42 2019. Размер: 14,152 bytes.
Посещение N 2405 c 22.12.2009