Sustainable industrial chemistry: principles, tools and industrial examples (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSustainable industrial chemistry: principles, tools and industrial examples / ed. by Cavani F., Centi G., Perathoner S., Trifiro F. - Weinheim: Wiley-VCH, 2009. - xii, 599 p.: ill. - Incl. bibl. ref. - Ind.: p.579-599. - ISBN 978-3-527-31552-9
 

Место хранения: 031 | Институт катализа им. Г.К.Борескова CO РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ XV
List of Contributors .......................................... XIX

1  From Green to Sustainable Industrial Chemistry ............... 1
   Gabriele Centi and Siglinda Perathoner
   1.1  Introduction ............................................ 1
        1.1.1  Green versus Sustainable Chemistry ............... 5
        1.1.2  Sustainability through Chemistry and the 
               F3-Factory ....................................... 6
        1.1.3  Role of Catalysis ................................ 8
        1.1.4  Sustainable Industrial Chemistry ................ 10
   1.2  Principles of Green Chemistry, Sustainable Chemistry
        and Risk ............................................... 11
        1.2.1  Sustainable Risk: Reflections Arising from 
               the Bhopal Accident ............................. 14
        1.2.2  Risk Assessment and Sustainable versus Green
               Chemistry ....................................... 20
        1.2.3  Inherently Safer Process Design ................. 21
        1.2.4  On-Demand Synthesis and Process Minimization .... 23
        1.2.5  Replacement of Hazardous Chemicals and Risk 
               Reduction ....................................... 26
        1.2.6  Replacement of Hazardous Chemicals: the Case 
               of DMC .......................................... 26
        1.2.7  Final Remarks on Sustainable Risk ............... 35
   1.3  Sustainable Chemical Production and REACH .............. 36
        1.3.1  How does REACH Works ............................ 38
        1.3.2  REACH and Sustainable Industrial Chemistry ...... 40
        1.3.3  Safety and Sustainability of Chemicals .......... 41
   1.4  International Chemicals Policy and Sustainability ...... 43
   1.5  Sustainable Chemistry and Inherently Safer Design ...... 47
   1.6  A Vision and Roadmap for Sustainability Through 
        Chemistry .............................................. 56
        1.6.1  Bio-Based Economy ............................... 59
        1.6.2  Energy .......................................... 62
        1.6.3  Healthcare ...................................... 63
        1.6.4  Information and Communication Technologies ...... 64
        1.6.5  Nanotechnology .................................. 65
        1.6.6  Sustainable Quality of Life ..................... 66
        1.6.7  Sustainable Product and Process Design .......... 66
        1.6.8  Transport ....................................... 67
        1.6.9  Risk Assessment and Management Strategies ....... 68
   1.7  Conclusions ............................................ 69
        References ............................................. 69
2  Methods and Tools of Sustainable Industrial Chemistry: 
   Catalysis ................................................... 73
   Gabriele Centi and Siglinda Perathoner
   2.1  Introduction ........................................... 73
   2.2  Catalysis as Enabling Factor of Sustainable Chemical
        Production ............................................. 74
   2.3  Homogeneous Catalysis and the Role of Multiphase 
        Operations ............................................. 77
        2.3.1  Multiphase Operations: General Aspects .......... 79
        2.3.2  Aqueous Biphase Operations ...................... 79
        2.3.3  Organic Biphase Operations ...................... 84
        2.3.4  Catalysts on Soluble Supports ................... 87
        2.3.5  Fluorous Liquids ................................ 88
        2.3.6  Ionic Liquids ................................... 90
        2.3.7  Supercritical Solvents .......................... 95
        2.3.8  Supported Liquid Films .......................... 97
        2.3.9  Conclusions on Multiphase Homogeneous
               Catalysis for Sustainable Processes ............ 102
   2.4  Bio- and Bioinspired-Catalysts ........................ 103
        2.4.1  Industrial Uses of Biocatalysis ................ 104
        2.4.2  Advantages and Limits of Biocatalysis and
               Trends in Research ............................. 105
        2.4.3  Biocatalysis for the Pharmaceutical Industry ... 107
        2.4.4  Biocatalysis for Sustainable Chemical
               Production ..................................... 108
        2.4.5  Biocatalysis in Novel Polymers from Bio-
               Resources ...................................... 112
        2.4.6  Progresses in Biocatalysis ..................... 114
        2.4.7  Biomimetic Catalysis ........................... 117
   2.5  Solid Acids and Bases ................................. 120
        2.5.1  Classes of Solid Acid/Base Catalysis ........... 120
        2.5.2  Alkylation with Solid Acid Catalysts ........... 125
        2.5.3  Synthesis of Cumene ............................ 130
        2.5.4  Friedel-Crafts Acylation ....................... 132
        2.5.5  Synthesis of Methylenedianiline ................ 133
        2.5.6  Synthesis of Caprolactam ....................... 235
        2.5.7  Green Traffic Fuels ............................ 140
        2.5.8  Solid Base Catalysts ........................... 144
               2.5.8.1  Hydrotalcites ......................... 145
               2.5.8.2  Other Solid Bases ..................... 154
   2.6  Redox Catalysis ....................................... 158
        2.6.1  Hydrogenation .................................. 158
        2.6.2  Asymmetric Hydrogenation ....................... 162
        2.6.3  Selective Oxidation ............................ 167
               2.6.3.1  Selective Oxidation: Liquid Phase ..... 170
               2.6.3.2  Selective Oxidation: Vapor Phase ...... 171
               2.6.3.3  Selective Oxidation: Examples of
                        Directions to Improve
                        Sustainability ........................ 172
   2.7  Cascade and Domino Catalytic Reactions ................ 184
   2.8  Multicomponent Catalytic Reactions .................... 186
   2.9  Organocatalysis ....................................... 187
   2.10 Conclusions ........................................... 188
   References ................................................. 188
3  Methods and Tools of Sustainable Industrial Chemistry:
   Process Intensification .................................... 199
   Gabriele Centi and Siglinda Perathoner
   3.1  Introduction .......................................... 199
        3.1.1  Opportunities and Perspectives for
               a Sustainable Process Design ................... 200
        3.1.2  Process Intensification and Inherently Safer
               Processes ...................................... 203
        3.1.3  A Critical Toolbox for a Sustainable
               Industrial Chemistry ........................... 204
        3.1.4  Fundaments of PI ............................... 210
        3.1.5  Methodologies .................................. 213
               3.1.5.1  Hybrid Unit Operations ................ 213
               3.1.5.2  New Operating Modes of Production ..... 218
               3.1.5.3  Microengineering and
                        Microtechnology ....................... 225
        3.1.6  Role for the Reduction of Emissions of
               Greenhouse Gases ............................... 228
   3.2  Alternative Sources and Forms of Energy for Process
        Intensification ....................................... 230
        3.2.1  High-Gravity Fields ............................ 230
        3.2.2  Electric Fields ................................ 232
        3.2.3  Microwav........................................ 234
        3.2.5  Acoustic Energy ................................ 237
        3.2.6  Energy of Flow ................................. 242
   3.3  Micro(structured)-Reactors ............................ 243
        3.3.1  Microreactor Materials and Fabrication
               Methods ........................................ 244
        3.3.2  Microreactors for Catalytic Gas-Phase
               Reactions ...................................... 245
        3.3.3  Microreactors for Catalytic Multiphase
               Systems ........................................ 246
        3.3.4  Industrial Microreactors for Fine and
               Functional Chemistry ........................... 247
               3.3.4.1  Phenyl Boronic Acid Synthesis
                        (Clariant) ............................ 248
               3.3.4.2  Azo Pigment Yellow 12 (Trust
                        Chem/Hangzhou) ........................ 248
               3.3.4.3  Hydrogen Peroxide Synthesis (UOP) ..... 248
               3.3.4.4  (S)-2-Acetyltetrahydrofuran
                        Synthesis (SK Corporation/Daejeon) .... 250
   References ................................................. 250
4  Membrane Technologies at the Service of Sustainable
   Development Through Process Intensification ................ 257
   Gilbert M. Rios, Marie-Pierre Belleville, Delphine
   Paolucci-Jeanjean, and Jose Sanchez

   4.1  Introduction .......................................... 257
   4.2  From Definitions to Function: A Few Fundamental
        Ideas ................................................. 258
        4.2.1  Membrane Operation ............................. 258
        4.2.2  Overall Performance: A Balance Between
               Material and Fluid Limitations ................. 259
        4.2.3  Membrane Material as a "High Tech Product"
               Contacting Device .............................. 260
        4.2.4  A Clear Distinction Between the "Function"
               and the "Material" ............................. 261
        4.2.5  Enlarged Uses of Membrane Concepts ............. 261
   4.3  The Need for More Integrated Views on Materials and
        Process Conditions .................................... 262
        4.3.1  When Dense or Microporous Materials Control
               the Overall Process Performance ................ 262
        4.3.2  Other Operations Using Meso- or Macroporous
               Membranes ...................................... 264
        4.3.3  Two Important Remarks .......................... 266
               4.3.3.1  Nano- and Micro-Engineering for
                        New Porous Thin Layers ................ 266
               4.3.3.2  Membrane Processes and Solid Bed
                        Technologies: A Comparison ............ 267
   4.4  Use of Hybrid Processes and New Operating Modes:
        The Key to Many Problems .............................. 267
        4.4.1  Nanofiltration-Coupled Catalysis ............... 267
        4.4.2  Supercritical Fluid-Assisted Membrane
               Separation and/or Reaction ..................... 269
        4.4.3  Membrane-Assisted Fluidized Bed Reactors ....... 270
        4.4.4  Electrodialysis with A Non-stationary Field .... 271
   4.5  Safe Management of Membrane Integration in
        Industrial Processes: A Huge Challenge ................ 273
   4.6  Conclusions ........................................... 276
   References ................................................. 277
5  Accounting for Chemical Sustainability ..................... 279
   Gabriele Centi and Siglinda Perathoner
   5.1  Introduction .......................................... 279
   5.2  Ecological Footprint .................................. 281
   5.3  Ecological Indicators ................................. 283
   5.4  Metrics for Environmental Analysis and Eco-
        Efficiency ............................................ 283
   5.5  Sustainability Accounting ............................. 292
        5.5.1  System Boundary ................................ 295
   5.6  E-Factor and Atom Economy ............................. 296
        5.6.1  Limits to Their Use ............................ 298
        5.6.2  Applicability to Evaluating the
               Sustainability of Chemical Industrial
               Processes ...................................... 299
   5.7  Energy Intensity ...................................... 304
   5.8  Environmental Impact Indicators ....................... 305
   5.9  Sustainable Chemical Production Metrics ............... 306
   5.10 Life Cycle Tools ...................................... 310
   5.11 Conclusions ........................................... 315
   References ................................................. 316
6  Synthesis of Propene Oxide: A Successful Example of
   Sustainable Industrial Chemistry ........................... 319
   Fabrizio Cavani and Anne M. Gaffney
   6.1  Introduction: Current Industrial Propene Oxide
        Production ............................................ 319
        6.1.1  CHPO (Chlorohydrin) Technology ................. 321
        6.1.2  PO/TBA Technology .............................. 321
        6.1.3  PO/SM Technology ............................... 321
   6.2  PO-only Routes: Several Approaches for Sustainable
        Alternatives .......................................... 323
        6.2.1  The First Industrial PO-Only Synthesis: the
               Sumitomo Process ............................... 325
        6.2.2  HPPO Processes: HP Generation by Redox Cycles
               on Organic О Carriers .......................... 329
               6.2.2.1  EniChem Approach: TS-1 Allows the
                        Integration of HP and PO Synthesis .... 330
               6.2.2.2  From the Dream Reaction to the Real
                        Process: the Implemented HPPO
                        Process ............................... 333
               6.2.2.3  Other Integrated HPPO Processes ....... 339
        6.2.3  HPPO and In Situ HPPO Processes: HP
               Generation by Direct Oxidation of H2 (DSHP) .... 341
               6.2.3.1  Several Technologies for In Situ
                        HPPO with TS-1-Supported Pd
                        Catalysts ............................. 341
               6.2.3.2  DSHP-HPPO Technology Developed by
                        Degussa Evonik/Headwaters ............. 344
        6.2.4  An Alternative Approach: Gas-Phase Reaction
               Between Propene and HP Vapors .................. 346
        6.2.5  An Efficient Alternative Reductant for 02:
               Methanol ....................................... 346
        6.2.6  Potential Future Solutions for PO Synthesis:
               Direct Gas-Phase Oxidation of Propene with
               Oxygen (DOPO) .................................. 347
        6.2.7  Potential Future Solutions for PO Synthesis:
               Gas-Phase Hydro-oxidation of Propene with
               Oxygen and Hydrogen (HOPO) ..................... 350
        6.2.8  Alternatives for Gas-Phase PO Synthesis ........ 356
               6.2.8.1  Gas-Phase Oxidation with N20 .......... 356
               6.2.8.2  Gas-Phase Oxidation with 03 ........... 357
        6.2.9  The Ultimate Challenge: Direct Oxidation of
               Propane to PO .................................. 358
   6.3  Conclusions ........................................... 358
        References ............................................ 359
7  Synthesis of Adipic Acid: On the Way to More Sustainable
   Production ................................................. 367
   Fabrizio Cavani and Stefano Alini
   7.1  Introduction: The Adipic Acid Market .................. 367
   7.2  Current Technologies for AA Production ................ 368
        7.2.1  Two-Step Transformation of Cyclohexane to AA:
               Oxidation of Cyclohexane to Ol/One with Air .... 369
        7.2.2  Alternatives for the Synthesis of Ol/One ....... 372
        7.2.3  Alternative Homogeneous Catalysts for
               Cyclohexane Oxidation to Ol/One ................ 374
        7.2.4  Two-Step Transformation of Cyclohexane to AA:
               Oxidation of Ol/One to AA with Nitric Acid ..... 375
        7.2.5  Environmental Issues in AA Production .......... 378
        7.2.6  Technologies for N20 Abatement ................. 379
               7.2.6.1  Catalytic Abatement ................... 380
               7.2.6.2  Thermal Abatement ..................... 382
        7.2.7  N20: From a Waste Compound to a Reactant for
               Downstream Applications ........................ 383
   7.3  Alternatives for AA Production ........................ 385
        7.3.1  Oxidation of KA Oil with Air ................... 385
        7.3.2  Direct Oxidation of Cyclohexane with Air ....... 389
               7.3.2.1  Homogeneous Autoxidation of
                        Cyclohexane Catalyzed by Co, Mn
                        or Cu ................................. 389
               7.3.2.2  Heterogeneous Catalysis for
                        Cyclohexane Oxidation to Either
                        Ol/One or AA (Various Oxidants
                        Included) ............................. 393
               7.3.2.3  N-Hydroxyphthalimide as the Catalyst
                        for the Oxidation of Cyclohexane to
                        AA with Oxygen ........................ 395
        7.3.3  Butadiene as the Starting Reagent .............. 399
        7.3.4  Dimerization of Methyl Acrylate ................ 402
   7.4  Emerging and Developing Technologies for AA
        Production ............................................ 402
        7.4.1  An Alternative Raw Material for AA Synthesis:
               Cyclohexene .................................... 402
               7.4.1.1  Single-Step Oxidation of Cyclohexene
                        to AA ................................. 403
               7.4.1.2  Two-Step Oxidation of Cyclohexene
                        to AA Via 1,2-Cyclohexandiol .......... 406
               7.4.1.3  Three-Step Oxidation of Cyclohexene
                        to AA Via Epoxide ..................... 408
               7.4.1.4  An Alternative Oxidant for
                        Cyclohexene: Oxygen ................... 409

        7.4.2  The Greenest Way Ever: Two-Step
               Transformation of Glucose to AA ................ 411
        7.4.3  The Ultimate Challenge: Direct Oxidation of
               n-Hexane to AA ................................. 412
   7.5  An Overview Several Possible Green Routes to AA,
        Some Sustainable, Others Not .......................... 413
        References ............................................ 414
8  Ecofining: New Process for Green Diesel Production from
   Vegetable Oil .............................................. 427
   Franco Baldiraghi, Marco Di Stanislao, Giovanni Farad,
   Carlo Perego, Terry Marker, Chris Gosling, Peter
   Kokayeff, Tom Kalnes, and Rich Marinangeli
   8.1  Introduction .......................................... 427
   8.2  From Vegetable Oil to Green Diesel .................... 428
   8.3  UOP/Eni Ecofining Process ............................. 434
   8.4  Life Cycle Assessment ................................. 435
   8.5  Conclusion ............................................ 437
   References ................................................. 438
9  A New Process for the Production of Biodiesel by
   Transesterification of Vegetable Oils with Heterogeneous
   Catalysis .................................................. 439
   Edouard Freund
   9.1  Introduction .......................................... 439
   9.2  Direct Use of Vegetable Oils .......................... 441
   9.3  Methyl Ester Derived from Vegetable Oils .............. 441
   9.4  Homogeneous Process for the Production of Biodiesel ... 442
   9.5  Improving the Transesterification Route: Esterfip-H ... 445
   9.6  Future Improvements of the Process .................... 447
        9.6.1  Catalyst Improvement ........................... 447
        9.6.2  Extension of the Process to other Feeds ........ 447
        9.6.3  Development of a Process for the Production
               of Ethyl Esters ................................ 447
   9.7  Conclusion ............................................ 448
        References ............................................ 448
10 Highly Sour Gas Processing in a More Sustainable World ..... 449
   François Lallemand and Ari Minkkinen
   10.1 Introduction .......................................... 449
        10.1.1 Background ..................................... 450
   10.2 Use of Activated MDEA for Acid Gas Removal ............ 451
   10.3 Process Performance Highlights ........................ 454
   10.4 Case Study of the Use of Activated MDEA for
        Treatment of Very Sour Gas ............................ 454
   10.5 Acid Gas Removal for Cycling and/or Disposal .......... 456
   10.6 Bulk H2S Removal for Disposal ......................... 458
   10.7 SPREX Performance ..................................... 459
   10.8 Capital Cost and Energy Balance Comparison ............ 460
   10.9 Conclusions ........................................... 461
   References ................................................. 461
11 BioETBE: A New Component for Gasoline ...................... 463
   Marco Di Girolamo and Domenico Sanfilippo
   11.1 Introduction .......................................... 463
   11.2 High Quality Oxygenated as Gasoline Components ........ 463
   11.3 ETBE Technology ....................................... 466
        11.3.1  ETBE Properties ............................... 466
        11.3.2  ETBE Synthesis ................................ 467
        11.3.3  ETBE Reactors ................................. 469
        11.3.4  ETBE Process .................................. 472
   References ................................................. 474
12 Olefin/Paraffin Alkylation: Evolution of a "Green"
   Technology ................................................. 475
   Anne M. Gaffney and Philip J. Angevine
   12.1 Introduction .......................................... 475
   12.2 Liquid Acid Catalysts ................................. 476
        12.2.1 Reaction Mechanism ............................. 479
        12.2.2 Operating Variables ............................ 481
        12.2.3 Advantages Versus Disadvantages ................ 484
   12.3 Zeolite Catalysts ..................................... 484
        12.3.1 Zeolite Factors Impacting Alkylation
               Performance .................................... 485
        12.3.2 Impact of Reaction Conditions for Zeolites ..... 486
        12.3.3 Overview of Zeolites in Alkylation ............. 488
   12.4 AlkyClean Alkylation Process: A True Solid Acid
        Catalyst (SAC) Process ................................ 488
        12.4.1 Catalyst Selection and Development ............. 489
        12.4.2 Process Development Activities ................. 489
        12.4.3 Optimization of Process Conditions ............. 492
        12.4.4 Effect of Feedstock Variation .................. 493
        12.4.5 Effect of Impurities ........................... 494
        12.4.6 Reactor System/Catalyst Regeneration ........... 495
        12.4.7 AlkyClean Process Demonstration Unit ........... 496
        12.4.8 Demo Unit Operation ............................ 497
        12.4.9 Competitiveness versus Liquid Acid
               Technologies ................................... 501
        12.4.10  Environmental, Cross-Media Effects ........... 503
   12.5 Conclusion ............................................ 504
        References ............................................ 504
13 Towards the Direct Oxidation of Benzene to Phenol .......... 507
   Marco Ricci, Daniele Bianchi, and Rossella Bortolo
   13.1 Introduction .......................................... 507
   13.2 Cumene Process ........................................ 508
        13.2.1 Alkylation ..................................... 508
        13.2.2 Oxidation and Concentration .................... 510
        13.2.3 Cleavage and Workup ............................ 511
        13.2.4 Cumene Process: Final Considerations ........... 512
   13.3 Solutia Process ....................................... 514
   13.4 Direct Oxidation of Benzene to Phenol with Hydrogen
        Peroxide .............................................. 516
        13.4.1 Definition of the Problem and First Attempts ... 516
        13.4.2 Homogeneous Catalysis by Iron Complexes:
               A Biphase Fenton Reagent ....................... 517
        13.4.3 Heterogeneous Catalysis by Titanium
               Silicalite ..................................... 519
   13.5 Perspectives .......................................... 525
   13.6 Conclusions ........................................... 525
   References ................................................. 526
14 Friedel-Crafts Acylation of Aromatic Ethers Using
   Zeolites ................................................... 529
   Roland Jacquot and Philippe Marion
   14.1 Introduction .......................................... 529
   14.2 Literature Background ................................. 530
   14.3 Acylation of Anisole by Acetic Anhydride .............. 530
        14.3.1 Industrial Processes ........................... 531
   14.4 Acylation of Veratrole by Acetic Anhydride Over HY
        Zeolite ............................................... 533
   14.5 Deactivation of the Catalysts ......................... 534
   14.6 Benzoylation of Phenol Ether .......................... 536
   14.7 Concluding Remarks .................................... 539
        References ............................................ 539
15 Green Sustainable Chemistry in the Production of
   Nicotinates ................................................ 541
   Roderick Chuck
   15.1 Requirements for Green Processes ...................... 541
   15.2 Significance of Niacin ................................ 542
   15.3 Green Principles in the Manufacture of Niacin ......... 542
        15.3.1 Choice of Feedstock ............................ 542
        15.3.2 Reaction Paths for Producing Niacin ............ 543
               15.3.2.1 Liquid-Phase Oxidation of Nicotine
                        with Permanganate, Chromic Acid,
                        etc. .................................. 543
               15.3.2.2 Liquid-Phase Oxidation of 3-Picoline
                        with Permanganate, Chromic Acid or
                        Nitric Acid ........................... 544
               15.3.2.3 Liquid-Phase Oxidation of МЕР with
                        Nitric Acid ........................... 545
               15.3.2.4 Direct Oxidation of 3-Picoline to
                        Niacin ................................ 546
        15.3.3 Choice of Catalyst (Efficiency, Separation,
               Recycling) ..................................... 547
        15.3.4 Down-Stream Processing/Unit Operations ......... 547
        15.3.5 Minimization of Pollutants and Waste Stream
               Volume ......................................... 547
        15.3.6 Recycling of Auxiliary, Side and Intermediate
               Products ....................................... 548
   15.4 Green Principles in Lonza's Niacinamide Process
        (5000 mtpa) ........................................... 548
16 Introducing Green Metrics Early in Process Development.
   Comparative Assessment of Alternative Industrial Routes
   to Elliott's Alcohol, A Key Intermediate in the
   Production of Resmethrins .................................. 551
   Paolo Righi, Goffredo Rosini, and Valerio Borzatta
   16.1 Introduction .......................................... 551
   16.2 Elliott's Alcohol ..................................... 552
   16.3 An Alternative Synthesis of Elliott's Alcohol ......... 554
   16.4 Comparative Assessment of the Two Alternative Routes
        to Elliott's Alcohol .................................. 555
        16.4.1 Comparison of E-Factors ........................ 556
        16.4.2 Comparison of Waste Environmental Impact ....... 557
        16.4.3 Comparison of Feedstock Environmental Impact ... 559
   16.5 Driving the "Green" Improvement ....................... 561
        16.6 Conclusions ...................................... 561
   References ................................................. 562
17 Basell Spherizone Technology ............................... 563
   Maurizio Dorini and Gabriele Mei
   17.1 Introduction .......................................... 563
   17.2 Technology Evolution .................................. 563
   17.3 Spherizone Technology ................................. 567
        17.3.1 Process Description ............................ 568
        17.3.2 Process Development and Scale Up ............... 572
        17.3.3 Modular Approach ............................... 574
   17.4. Technology Comparison ................................ 575
   17.5 Environmental Considerations .......................... 576
   References ................................................. 578

Index ......................................................... 579


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:42 2019. Размер: 33,571 bytes.
Посещение N 2515 c 15.12.2009