Preface ........................................................ XV
List of Contributors .......................................... XIX
1 From Green to Sustainable Industrial Chemistry ............... 1
Gabriele Centi and Siglinda Perathoner
1.1 Introduction ............................................ 1
1.1.1 Green versus Sustainable Chemistry ............... 5
1.1.2 Sustainability through Chemistry and the
F3-Factory ....................................... 6
1.1.3 Role of Catalysis ................................ 8
1.1.4 Sustainable Industrial Chemistry ................ 10
1.2 Principles of Green Chemistry, Sustainable Chemistry
and Risk ............................................... 11
1.2.1 Sustainable Risk: Reflections Arising from
the Bhopal Accident ............................. 14
1.2.2 Risk Assessment and Sustainable versus Green
Chemistry ....................................... 20
1.2.3 Inherently Safer Process Design ................. 21
1.2.4 On-Demand Synthesis and Process Minimization .... 23
1.2.5 Replacement of Hazardous Chemicals and Risk
Reduction ....................................... 26
1.2.6 Replacement of Hazardous Chemicals: the Case
of DMC .......................................... 26
1.2.7 Final Remarks on Sustainable Risk ............... 35
1.3 Sustainable Chemical Production and REACH .............. 36
1.3.1 How does REACH Works ............................ 38
1.3.2 REACH and Sustainable Industrial Chemistry ...... 40
1.3.3 Safety and Sustainability of Chemicals .......... 41
1.4 International Chemicals Policy and Sustainability ...... 43
1.5 Sustainable Chemistry and Inherently Safer Design ...... 47
1.6 A Vision and Roadmap for Sustainability Through
Chemistry .............................................. 56
1.6.1 Bio-Based Economy ............................... 59
1.6.2 Energy .......................................... 62
1.6.3 Healthcare ...................................... 63
1.6.4 Information and Communication Technologies ...... 64
1.6.5 Nanotechnology .................................. 65
1.6.6 Sustainable Quality of Life ..................... 66
1.6.7 Sustainable Product and Process Design .......... 66
1.6.8 Transport ....................................... 67
1.6.9 Risk Assessment and Management Strategies ....... 68
1.7 Conclusions ............................................ 69
References ............................................. 69
2 Methods and Tools of Sustainable Industrial Chemistry:
Catalysis ................................................... 73
Gabriele Centi and Siglinda Perathoner
2.1 Introduction ........................................... 73
2.2 Catalysis as Enabling Factor of Sustainable Chemical
Production ............................................. 74
2.3 Homogeneous Catalysis and the Role of Multiphase
Operations ............................................. 77
2.3.1 Multiphase Operations: General Aspects .......... 79
2.3.2 Aqueous Biphase Operations ...................... 79
2.3.3 Organic Biphase Operations ...................... 84
2.3.4 Catalysts on Soluble Supports ................... 87
2.3.5 Fluorous Liquids ................................ 88
2.3.6 Ionic Liquids ................................... 90
2.3.7 Supercritical Solvents .......................... 95
2.3.8 Supported Liquid Films .......................... 97
2.3.9 Conclusions on Multiphase Homogeneous
Catalysis for Sustainable Processes ............ 102
2.4 Bio- and Bioinspired-Catalysts ........................ 103
2.4.1 Industrial Uses of Biocatalysis ................ 104
2.4.2 Advantages and Limits of Biocatalysis and
Trends in Research ............................. 105
2.4.3 Biocatalysis for the Pharmaceutical Industry ... 107
2.4.4 Biocatalysis for Sustainable Chemical
Production ..................................... 108
2.4.5 Biocatalysis in Novel Polymers from Bio-
Resources ...................................... 112
2.4.6 Progresses in Biocatalysis ..................... 114
2.4.7 Biomimetic Catalysis ........................... 117
2.5 Solid Acids and Bases ................................. 120
2.5.1 Classes of Solid Acid/Base Catalysis ........... 120
2.5.2 Alkylation with Solid Acid Catalysts ........... 125
2.5.3 Synthesis of Cumene ............................ 130
2.5.4 Friedel-Crafts Acylation ....................... 132
2.5.5 Synthesis of Methylenedianiline ................ 133
2.5.6 Synthesis of Caprolactam ....................... 235
2.5.7 Green Traffic Fuels ............................ 140
2.5.8 Solid Base Catalysts ........................... 144
2.5.8.1 Hydrotalcites ......................... 145
2.5.8.2 Other Solid Bases ..................... 154
2.6 Redox Catalysis ....................................... 158
2.6.1 Hydrogenation .................................. 158
2.6.2 Asymmetric Hydrogenation ....................... 162
2.6.3 Selective Oxidation ............................ 167
2.6.3.1 Selective Oxidation: Liquid Phase ..... 170
2.6.3.2 Selective Oxidation: Vapor Phase ...... 171
2.6.3.3 Selective Oxidation: Examples of
Directions to Improve
Sustainability ........................ 172
2.7 Cascade and Domino Catalytic Reactions ................ 184
2.8 Multicomponent Catalytic Reactions .................... 186
2.9 Organocatalysis ....................................... 187
2.10 Conclusions ........................................... 188
References ................................................. 188
3 Methods and Tools of Sustainable Industrial Chemistry:
Process Intensification .................................... 199
Gabriele Centi and Siglinda Perathoner
3.1 Introduction .......................................... 199
3.1.1 Opportunities and Perspectives for
a Sustainable Process Design ................... 200
3.1.2 Process Intensification and Inherently Safer
Processes ...................................... 203
3.1.3 A Critical Toolbox for a Sustainable
Industrial Chemistry ........................... 204
3.1.4 Fundaments of PI ............................... 210
3.1.5 Methodologies .................................. 213
3.1.5.1 Hybrid Unit Operations ................ 213
3.1.5.2 New Operating Modes of Production ..... 218
3.1.5.3 Microengineering and
Microtechnology ....................... 225
3.1.6 Role for the Reduction of Emissions of
Greenhouse Gases ............................... 228
3.2 Alternative Sources and Forms of Energy for Process
Intensification ....................................... 230
3.2.1 High-Gravity Fields ............................ 230
3.2.2 Electric Fields ................................ 232
3.2.3 Microwav........................................ 234
3.2.5 Acoustic Energy ................................ 237
3.2.6 Energy of Flow ................................. 242
3.3 Micro(structured)-Reactors ............................ 243
3.3.1 Microreactor Materials and Fabrication
Methods ........................................ 244
3.3.2 Microreactors for Catalytic Gas-Phase
Reactions ...................................... 245
3.3.3 Microreactors for Catalytic Multiphase
Systems ........................................ 246
3.3.4 Industrial Microreactors for Fine and
Functional Chemistry ........................... 247
3.3.4.1 Phenyl Boronic Acid Synthesis
(Clariant) ............................ 248
3.3.4.2 Azo Pigment Yellow 12 (Trust
Chem/Hangzhou) ........................ 248
3.3.4.3 Hydrogen Peroxide Synthesis (UOP) ..... 248
3.3.4.4 (S)-2-Acetyltetrahydrofuran
Synthesis (SK Corporation/Daejeon) .... 250
References ................................................. 250
4 Membrane Technologies at the Service of Sustainable
Development Through Process Intensification ................ 257
Gilbert M. Rios, Marie-Pierre Belleville, Delphine
Paolucci-Jeanjean, and Jose Sanchez
4.1 Introduction .......................................... 257
4.2 From Definitions to Function: A Few Fundamental
Ideas ................................................. 258
4.2.1 Membrane Operation ............................. 258
4.2.2 Overall Performance: A Balance Between
Material and Fluid Limitations ................. 259
4.2.3 Membrane Material as a "High Tech Product"
Contacting Device .............................. 260
4.2.4 A Clear Distinction Between the "Function"
and the "Material" ............................. 261
4.2.5 Enlarged Uses of Membrane Concepts ............. 261
4.3 The Need for More Integrated Views on Materials and
Process Conditions .................................... 262
4.3.1 When Dense or Microporous Materials Control
the Overall Process Performance ................ 262
4.3.2 Other Operations Using Meso- or Macroporous
Membranes ...................................... 264
4.3.3 Two Important Remarks .......................... 266
4.3.3.1 Nano- and Micro-Engineering for
New Porous Thin Layers ................ 266
4.3.3.2 Membrane Processes and Solid Bed
Technologies: A Comparison ............ 267
4.4 Use of Hybrid Processes and New Operating Modes:
The Key to Many Problems .............................. 267
4.4.1 Nanofiltration-Coupled Catalysis ............... 267
4.4.2 Supercritical Fluid-Assisted Membrane
Separation and/or Reaction ..................... 269
4.4.3 Membrane-Assisted Fluidized Bed Reactors ....... 270
4.4.4 Electrodialysis with A Non-stationary Field .... 271
4.5 Safe Management of Membrane Integration in
Industrial Processes: A Huge Challenge ................ 273
4.6 Conclusions ........................................... 276
References ................................................. 277
5 Accounting for Chemical Sustainability ..................... 279
Gabriele Centi and Siglinda Perathoner
5.1 Introduction .......................................... 279
5.2 Ecological Footprint .................................. 281
5.3 Ecological Indicators ................................. 283
5.4 Metrics for Environmental Analysis and Eco-
Efficiency ............................................ 283
5.5 Sustainability Accounting ............................. 292
5.5.1 System Boundary ................................ 295
5.6 E-Factor and Atom Economy ............................. 296
5.6.1 Limits to Their Use ............................ 298
5.6.2 Applicability to Evaluating the
Sustainability of Chemical Industrial
Processes ...................................... 299
5.7 Energy Intensity ...................................... 304
5.8 Environmental Impact Indicators ....................... 305
5.9 Sustainable Chemical Production Metrics ............... 306
5.10 Life Cycle Tools ...................................... 310
5.11 Conclusions ........................................... 315
References ................................................. 316
6 Synthesis of Propene Oxide: A Successful Example of
Sustainable Industrial Chemistry ........................... 319
Fabrizio Cavani and Anne M. Gaffney
6.1 Introduction: Current Industrial Propene Oxide
Production ............................................ 319
6.1.1 CHPO (Chlorohydrin) Technology ................. 321
6.1.2 PO/TBA Technology .............................. 321
6.1.3 PO/SM Technology ............................... 321
6.2 PO-only Routes: Several Approaches for Sustainable
Alternatives .......................................... 323
6.2.1 The First Industrial PO-Only Synthesis: the
Sumitomo Process ............................... 325
6.2.2 HPPO Processes: HP Generation by Redox Cycles
on Organic О Carriers .......................... 329
6.2.2.1 EniChem Approach: TS-1 Allows the
Integration of HP and PO Synthesis .... 330
6.2.2.2 From the Dream Reaction to the Real
Process: the Implemented HPPO
Process ............................... 333
6.2.2.3 Other Integrated HPPO Processes ....... 339
6.2.3 HPPO and In Situ HPPO Processes: HP
Generation by Direct Oxidation of H2 (DSHP) .... 341
6.2.3.1 Several Technologies for In Situ
HPPO with TS-1-Supported Pd
Catalysts ............................. 341
6.2.3.2 DSHP-HPPO Technology Developed by
Degussa Evonik/Headwaters ............. 344
6.2.4 An Alternative Approach: Gas-Phase Reaction
Between Propene and HP Vapors .................. 346
6.2.5 An Efficient Alternative Reductant for 02:
Methanol ....................................... 346
6.2.6 Potential Future Solutions for PO Synthesis:
Direct Gas-Phase Oxidation of Propene with
Oxygen (DOPO) .................................. 347
6.2.7 Potential Future Solutions for PO Synthesis:
Gas-Phase Hydro-oxidation of Propene with
Oxygen and Hydrogen (HOPO) ..................... 350
6.2.8 Alternatives for Gas-Phase PO Synthesis ........ 356
6.2.8.1 Gas-Phase Oxidation with N20 .......... 356
6.2.8.2 Gas-Phase Oxidation with 03 ........... 357
6.2.9 The Ultimate Challenge: Direct Oxidation of
Propane to PO .................................. 358
6.3 Conclusions ........................................... 358
References ............................................ 359
7 Synthesis of Adipic Acid: On the Way to More Sustainable
Production ................................................. 367
Fabrizio Cavani and Stefano Alini
7.1 Introduction: The Adipic Acid Market .................. 367
7.2 Current Technologies for AA Production ................ 368
7.2.1 Two-Step Transformation of Cyclohexane to AA:
Oxidation of Cyclohexane to Ol/One with Air .... 369
7.2.2 Alternatives for the Synthesis of Ol/One ....... 372
7.2.3 Alternative Homogeneous Catalysts for
Cyclohexane Oxidation to Ol/One ................ 374
7.2.4 Two-Step Transformation of Cyclohexane to AA:
Oxidation of Ol/One to AA with Nitric Acid ..... 375
7.2.5 Environmental Issues in AA Production .......... 378
7.2.6 Technologies for N20 Abatement ................. 379
7.2.6.1 Catalytic Abatement ................... 380
7.2.6.2 Thermal Abatement ..................... 382
7.2.7 N20: From a Waste Compound to a Reactant for
Downstream Applications ........................ 383
7.3 Alternatives for AA Production ........................ 385
7.3.1 Oxidation of KA Oil with Air ................... 385
7.3.2 Direct Oxidation of Cyclohexane with Air ....... 389
7.3.2.1 Homogeneous Autoxidation of
Cyclohexane Catalyzed by Co, Mn
or Cu ................................. 389
7.3.2.2 Heterogeneous Catalysis for
Cyclohexane Oxidation to Either
Ol/One or AA (Various Oxidants
Included) ............................. 393
7.3.2.3 N-Hydroxyphthalimide as the Catalyst
for the Oxidation of Cyclohexane to
AA with Oxygen ........................ 395
7.3.3 Butadiene as the Starting Reagent .............. 399
7.3.4 Dimerization of Methyl Acrylate ................ 402
7.4 Emerging and Developing Technologies for AA
Production ............................................ 402
7.4.1 An Alternative Raw Material for AA Synthesis:
Cyclohexene .................................... 402
7.4.1.1 Single-Step Oxidation of Cyclohexene
to AA ................................. 403
7.4.1.2 Two-Step Oxidation of Cyclohexene
to AA Via 1,2-Cyclohexandiol .......... 406
7.4.1.3 Three-Step Oxidation of Cyclohexene
to AA Via Epoxide ..................... 408
7.4.1.4 An Alternative Oxidant for
Cyclohexene: Oxygen ................... 409
7.4.2 The Greenest Way Ever: Two-Step
Transformation of Glucose to AA ................ 411
7.4.3 The Ultimate Challenge: Direct Oxidation of
n-Hexane to AA ................................. 412
7.5 An Overview Several Possible Green Routes to AA,
Some Sustainable, Others Not .......................... 413
References ............................................ 414
8 Ecofining: New Process for Green Diesel Production from
Vegetable Oil .............................................. 427
Franco Baldiraghi, Marco Di Stanislao, Giovanni Farad,
Carlo Perego, Terry Marker, Chris Gosling, Peter
Kokayeff, Tom Kalnes, and Rich Marinangeli
8.1 Introduction .......................................... 427
8.2 From Vegetable Oil to Green Diesel .................... 428
8.3 UOP/Eni Ecofining Process ............................. 434
8.4 Life Cycle Assessment ................................. 435
8.5 Conclusion ............................................ 437
References ................................................. 438
9 A New Process for the Production of Biodiesel by
Transesterification of Vegetable Oils with Heterogeneous
Catalysis .................................................. 439
Edouard Freund
9.1 Introduction .......................................... 439
9.2 Direct Use of Vegetable Oils .......................... 441
9.3 Methyl Ester Derived from Vegetable Oils .............. 441
9.4 Homogeneous Process for the Production of Biodiesel ... 442
9.5 Improving the Transesterification Route: Esterfip-H ... 445
9.6 Future Improvements of the Process .................... 447
9.6.1 Catalyst Improvement ........................... 447
9.6.2 Extension of the Process to other Feeds ........ 447
9.6.3 Development of a Process for the Production
of Ethyl Esters ................................ 447
9.7 Conclusion ............................................ 448
References ............................................ 448
10 Highly Sour Gas Processing in a More Sustainable World ..... 449
François Lallemand and Ari Minkkinen
10.1 Introduction .......................................... 449
10.1.1 Background ..................................... 450
10.2 Use of Activated MDEA for Acid Gas Removal ............ 451
10.3 Process Performance Highlights ........................ 454
10.4 Case Study of the Use of Activated MDEA for
Treatment of Very Sour Gas ............................ 454
10.5 Acid Gas Removal for Cycling and/or Disposal .......... 456
10.6 Bulk H2S Removal for Disposal ......................... 458
10.7 SPREX Performance ..................................... 459
10.8 Capital Cost and Energy Balance Comparison ............ 460
10.9 Conclusions ........................................... 461
References ................................................. 461
11 BioETBE: A New Component for Gasoline ...................... 463
Marco Di Girolamo and Domenico Sanfilippo
11.1 Introduction .......................................... 463
11.2 High Quality Oxygenated as Gasoline Components ........ 463
11.3 ETBE Technology ....................................... 466
11.3.1 ETBE Properties ............................... 466
11.3.2 ETBE Synthesis ................................ 467
11.3.3 ETBE Reactors ................................. 469
11.3.4 ETBE Process .................................. 472
References ................................................. 474
12 Olefin/Paraffin Alkylation: Evolution of a "Green"
Technology ................................................. 475
Anne M. Gaffney and Philip J. Angevine
12.1 Introduction .......................................... 475
12.2 Liquid Acid Catalysts ................................. 476
12.2.1 Reaction Mechanism ............................. 479
12.2.2 Operating Variables ............................ 481
12.2.3 Advantages Versus Disadvantages ................ 484
12.3 Zeolite Catalysts ..................................... 484
12.3.1 Zeolite Factors Impacting Alkylation
Performance .................................... 485
12.3.2 Impact of Reaction Conditions for Zeolites ..... 486
12.3.3 Overview of Zeolites in Alkylation ............. 488
12.4 AlkyClean Alkylation Process: A True Solid Acid
Catalyst (SAC) Process ................................ 488
12.4.1 Catalyst Selection and Development ............. 489
12.4.2 Process Development Activities ................. 489
12.4.3 Optimization of Process Conditions ............. 492
12.4.4 Effect of Feedstock Variation .................. 493
12.4.5 Effect of Impurities ........................... 494
12.4.6 Reactor System/Catalyst Regeneration ........... 495
12.4.7 AlkyClean Process Demonstration Unit ........... 496
12.4.8 Demo Unit Operation ............................ 497
12.4.9 Competitiveness versus Liquid Acid
Technologies ................................... 501
12.4.10 Environmental, Cross-Media Effects ........... 503
12.5 Conclusion ............................................ 504
References ............................................ 504
13 Towards the Direct Oxidation of Benzene to Phenol .......... 507
Marco Ricci, Daniele Bianchi, and Rossella Bortolo
13.1 Introduction .......................................... 507
13.2 Cumene Process ........................................ 508
13.2.1 Alkylation ..................................... 508
13.2.2 Oxidation and Concentration .................... 510
13.2.3 Cleavage and Workup ............................ 511
13.2.4 Cumene Process: Final Considerations ........... 512
13.3 Solutia Process ....................................... 514
13.4 Direct Oxidation of Benzene to Phenol with Hydrogen
Peroxide .............................................. 516
13.4.1 Definition of the Problem and First Attempts ... 516
13.4.2 Homogeneous Catalysis by Iron Complexes:
A Biphase Fenton Reagent ....................... 517
13.4.3 Heterogeneous Catalysis by Titanium
Silicalite ..................................... 519
13.5 Perspectives .......................................... 525
13.6 Conclusions ........................................... 525
References ................................................. 526
14 Friedel-Crafts Acylation of Aromatic Ethers Using
Zeolites ................................................... 529
Roland Jacquot and Philippe Marion
14.1 Introduction .......................................... 529
14.2 Literature Background ................................. 530
14.3 Acylation of Anisole by Acetic Anhydride .............. 530
14.3.1 Industrial Processes ........................... 531
14.4 Acylation of Veratrole by Acetic Anhydride Over HY
Zeolite ............................................... 533
14.5 Deactivation of the Catalysts ......................... 534
14.6 Benzoylation of Phenol Ether .......................... 536
14.7 Concluding Remarks .................................... 539
References ............................................ 539
15 Green Sustainable Chemistry in the Production of
Nicotinates ................................................ 541
Roderick Chuck
15.1 Requirements for Green Processes ...................... 541
15.2 Significance of Niacin ................................ 542
15.3 Green Principles in the Manufacture of Niacin ......... 542
15.3.1 Choice of Feedstock ............................ 542
15.3.2 Reaction Paths for Producing Niacin ............ 543
15.3.2.1 Liquid-Phase Oxidation of Nicotine
with Permanganate, Chromic Acid,
etc. .................................. 543
15.3.2.2 Liquid-Phase Oxidation of 3-Picoline
with Permanganate, Chromic Acid or
Nitric Acid ........................... 544
15.3.2.3 Liquid-Phase Oxidation of МЕР with
Nitric Acid ........................... 545
15.3.2.4 Direct Oxidation of 3-Picoline to
Niacin ................................ 546
15.3.3 Choice of Catalyst (Efficiency, Separation,
Recycling) ..................................... 547
15.3.4 Down-Stream Processing/Unit Operations ......... 547
15.3.5 Minimization of Pollutants and Waste Stream
Volume ......................................... 547
15.3.6 Recycling of Auxiliary, Side and Intermediate
Products ....................................... 548
15.4 Green Principles in Lonza's Niacinamide Process
(5000 mtpa) ........................................... 548
16 Introducing Green Metrics Early in Process Development.
Comparative Assessment of Alternative Industrial Routes
to Elliott's Alcohol, A Key Intermediate in the
Production of Resmethrins .................................. 551
Paolo Righi, Goffredo Rosini, and Valerio Borzatta
16.1 Introduction .......................................... 551
16.2 Elliott's Alcohol ..................................... 552
16.3 An Alternative Synthesis of Elliott's Alcohol ......... 554
16.4 Comparative Assessment of the Two Alternative Routes
to Elliott's Alcohol .................................. 555
16.4.1 Comparison of E-Factors ........................ 556
16.4.2 Comparison of Waste Environmental Impact ....... 557
16.4.3 Comparison of Feedstock Environmental Impact ... 559
16.5 Driving the "Green" Improvement ....................... 561
16.6 Conclusions ...................................... 561
References ................................................. 562
17 Basell Spherizone Technology ............................... 563
Maurizio Dorini and Gabriele Mei
17.1 Introduction .......................................... 563
17.2 Technology Evolution .................................. 563
17.3 Spherizone Technology ................................. 567
17.3.1 Process Description ............................ 568
17.3.2 Process Development and Scale Up ............... 572
17.3.3 Modular Approach ............................... 574
17.4. Technology Comparison ................................ 575
17.5 Environmental Considerations .......................... 576
References ................................................. 578
Index ......................................................... 579
|