Graczynska E.W. M-Solid quasivarieties (Opole, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGraczynska E.W. M-Solid quasivarieties. - Opole: Politechnika Opolska, 2007. - 166 p. - (Studia i monografie; Z.207). - Bibliogr.: p.151-163. - Ind.: p.164-166. - ISBN 978-83-60691-23-6; ISSN 1429-6063
 

Оглавление / Contents
 
1  Introduction ................................................. 9
2  Algebras and classes of algebras ............................ 15
   2.1  Identities and varieties of algebras ................... 16
   2.2  Quasi-identities and quasi varieties of algebras ....... 18
   2.3  Closure and kernel operators ........................... 19
   2.4  The Galois Connection (Id,Mod) ......................... 20
   2.5  Conjugate pairs of additive closure operators .......... 21
3  Hypersubstitutions .......................................... 23
   3.1  Basic definitions ...................................... 23
   3.2  Derived algebras of a given type ....................... 24
   3.3  Solid varieties ........................................ 26
   3.4  The closure operator D ................................. 27
   3.5  The lattice of solid varieties of a given type τ ....... 28
   3.6  Examples of solid varieties ............................ 28
   3.7  The closure operators χA and χE ........................ 30
   3.8  Fluid varieties ........................................ 32
   3.9  The dimension .......................................... 36
   3.10 Dimensions of varieties of lattices .................... 36
   3.11 Dimensions of subvarieties of regular bands ............ 39
4  Solid quasivarieties ........................................ 48
   4.1  Mal'cev type theorems .................................. 49
5  Hyperquasi-identities ....................................... 54
   5.1  The closure operators χA χQE ............................ 55
6  Examples of hyperquasi-identities ........................... 59
   6.1  Abelian algebras ....................................... 59
   6.2  Solvable algebras ...................................... 60
   6.3  Groupoids .............................................. 61
   6.4  Modes .................................................. 62
   6.5  Quasigroups ............................................ 62
   6.6  Groups ................................................. 63
   6.7  Unary algebras ......................................... 64
   6.8  Semidistributive lattices .............................. 66
   6.9  Distributive lattices .................................. 67
7  Hyperequational logic ....................................... 68
   7.1  Hyperidentities and hypervarieties ..................... 68
   7.2  Free solid algebras .................................... 68
   7.3  Totally invariant congruences .......................... 69
   7.4  Birkhoff's type theorems for hypervarieties ............ 70
8  Hyperquasi-equational logic ................................. 77
9  M-dimension of a variety .................................... 86
   9.1  M-derived algebras ..................................... 86
   9.2  M-solid algebras ....................................... 87
   9.3  M-solid varieties ...................................... 88
   9.4  M-dimension ............................................ 90
   9.5  M-dimensions of varieties of lattices .................. 91
   9.6  M-dimensions of varieties of regular bands ............. 93
10 Quasicompact classes ....................................... 101
11 M-solid quasivarieties ..................................... 102
12 M-hyperquasi-identities .................................... 106
   12.1 Closure operators χAM χQEM.............................. 109
13 Examples of M-hyperquasi-identities ........................ 1ll
   13.1 Quasigroups ........................................... 1ll
   13.2 Distributive lattices ................................. 1ll
   13.3 Boolean Algebras ...................................... 112
   13.4 Unary algebras ........................................ 113
   13.5 Flat algebras ......................................... 118
14 Solution of the hyperbasis problem ......................... 121
   14.1 Solution of the hyperquasi basis problem .............. 122
   14.2 Hyperbasis problem in varieties ....................... 123
15 Solution of the M-hyperbasis problem ....................... 125
   15.1 Solution of the M-hyperquasi basis problem ............ 126
   15.2 M-hyperbasis problem in varieties ..................... 127
16 M-quasicompact classes ..................................... 128
17 M-hyperquasi-equational logic .............................. 129
18 M-hyperequational logic .................................... 135
   18.1 M-hyperidentities and M-hypervarieties ................ 135
   18.2 M-derived classes ..................................... 135
   18.3 Free M-solid algebras ................................. 136
   18.4 M-totally invariant congruences ....................... 138
   18.5 Birkhoff's theorems for M-hypervarieties .............. 138
19 Solution of the hyperequational problems ................... 144
20 Solution of liyperquasi-equational problems ................ 146
21 Summary in German - Zusammenfassung ........................ 148
22 Summary in Polish - Streszczenie ........................... 150

BIBLIOGRAPHY .................................................. 151
INDEX ......................................................... 164


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:42 2019. Размер: 9,026 bytes.
Посещение N 1719 c 15.12.2009