Preface ........................................................ XI
List of Contributors ......................................... XIII
1 Simple Molecules, Highly Efficient Amination ................. 1
Shunsuke Chiba and Koichi Narasaka
1.1 Introduction ............................................ 1
1.2 Hydroxylamine Derivatives ............................... 1
1.2.1 O-Sulfonylhydroxylamine .......................... 1
1.2.2 O-Phosphinylhydroxylamine ........................ 4
1.2.3 O-Acylhydroxylamine .............................. 5
1.2.4 O-Trimethylsilylhydroxylamine .................... 6
1.2.5 Experimental Procedures .......................... 7
1.3 Oxime Derivatives ....................................... 9
1.3.1 Synthesis of Primary Amines by Electrophilic
Amination of Carbanions .......................... 9
1.3.2 Experimental Procedures ......................... 13
1.4 Azo Compounds .......................................... 15
1.4.1 Azodicarboxylates ............................... 15
1.4.1.1 Allylic Amination through Ene-Type
Reactions .............................. 15
1.4.1.2 Hydrohydrazination of Alkenes .......... 16
1.4.2 Arylazo Sulfones ................................ 19
1.4.3 Experimental Procedures ......................... 20
1.5 Oxaziridine Derivatives ................................ 23
1.5.1 Electrophilic Amination of Carbon
Nucleophiles .................................... 23
1.5.2 Amination of Allylic and Propargylic Sulfides
by Use of a Ketomalonate-Derived Oxaziridine .... 23
1.5.3 Experimental Procedures ......................... 25
1.6 Chloramine-T ........................................... 26
1.6.1 Aminochalcogenation of Alkenes .................. 26
1.6.2 Aminohydroxylation of Alkenes ................... 26
1.6.3 Aziridination of Alkenes ........................ 27
1.6.4 Other Applications .............................. 32
1.6.5 Experimental Procedures ......................... 34
1.7 N-Sulfonyliminophenyliodinane .......................... 35
1.7.1 Transition Metal-Catalyzed Amination of
Alkenes ......................................... 36
1.7.2 Experimental Procedures ......................... 37
1.8 Transition Metal-Nitride Complexes ..................... 38
1.8.1 Nitrogen Atom Transfer Mediated by Transition
Metal/Nitride Complexes ......................... 38
1.8.2 Experimental Procedures ......................... 39
1.9 Azido Derivatives ...................................... 41
1.9.1 Electrophilic Amination of Organometallic
Reagents with Organic Azides .................... 42
1.9.2 Radical-Mediated Amination with Sulfonyl
Azides .......................................... 43
1.9.3 Hydroazidation of Alkenes with Sulfonyl
Azides .......................................... 43
1.9.4 Experimental Procedures ......................... 44
1.10 Gabriel-Type Reagents .................................. 46
1.10.1 Nucleophilic Amination Reactions ................ 46
1.10.2 Experimental Procedure .......................... 49
1.11 Conclusion ............................................. 50
2 Catalytic С—Н Amination with Nitrenes ....................... 55
Philippe Dauban and Robert H. Dodd
2.1 Introduction ........................................... 55
2.2 Historical Overview .................................... 56
2.3 Hypervalent Iodine-Mediated С—Н Amination .............. 60
2.3.1 Intramolecular С—Н Amination .................... 60
2.3.1.1 From NH2 Carbamates .................... 60
2.3.1.2 From NH2 Sulfamates .................... 62
2.3.1.3 From Other Nitrogen Functionalities .... 65
2.3.2 Intermolecular С—Н Amination .................... 67
2.3.2.1 General Scope and Limitations .......... 67
2.3.2.2 Recent Major Improvements .............. 70
2.4 Other Nitrene Precursors for С—Н Amination ............. 73
2.4.1 Azides .......................................... 73
2.4.2 Haloamines ...................................... 74
2.4.3 Carbamate Derivatives ........................... 76
2.5 Amination of Aromatic С—Н Bonds ........................ 77
2.6 Applications in Total Synthesis ........................ 80
2.6.1 Application of Intramolecular С—Н Amination
with Carbamates ................................. 80
2.6.2 Application of Intramolecular С—Н Amination
with Sulfamates ................................. 83
2.6.3 Application of Intermolecular C—H Amination ..... 87
2.7 Conclusions ............................................ 88
3 Nitroalkenes as Amination Tools ............................. 93
Roberto Ballini, Enrico Marcantoni, and Marino Petrini
3.1 Introduction ........................................... 93
3.2 General Strategies for the Synthesis of Nitroalkenes ... 93
3.3 Synthesis of Alkylamines ............................... 95
3.3.1 Monoamines ...................................... 95
3.3.2 Amino Acid Derivatives .......................... 98
3.3.3 Amino Alcohols ................................. 103
3.3.4 Diamino Derivatives ............................ 106
3.4 Pyrrolidine Derivatives ............................... 112
3.4.1 Pyrrolidinones ................................. 112
3.4.2 Pyrrolidines ................................... 115
3.5 Piperidines and Piperazines ........................... 124
3.6 Pyrrolizidines and Related Derivatives ................ 126
3.7 Arene-Fused Nitrogen Heterocycles ..................... 132
3.7.1 Pyrroloindole Derivatives ...................... 132
3.7.2 Carbolines and their Tryptamine Precursors ..... 132
3.7.3 Arene-Fused Piperidine Compounds ............... 135
3.8 Other Polycyclic Derivatives .......................... 140
3.9 Conclusion ............................................ 144
4 Isocyanide-Based Multicomponent Reactions (IMCRs) as
a Valuable Tool with which to Synthesize Nitrogen-
Containing Compounds ....................................... 149
Alexander Doemling
4.1 Introduction .......................................... 149
4.2 The Ugi Reaction ...................................... 152
4.2.1 Intramolecular Ugi Reactions Involving Two
Functional Groups .............................. 158
4.2.2 The Ugi Reaction and Secondary
Transformations ................................ 166
4.3 Passerini Reaction .................................... 171
4.4 van Leusen Reaction ................................... 175
4.5 Other IMCRs ........................................... 177
4.6 Outlook ............................................... 180
5 Direct Catalytic Asymmetric Mannich Reactions and
Surroundings ............................................... 185
Armando Cordova and Ramon Rios
5.1 Introduction .......................................... 185
5.2 Organometallic Catalysts .............................. 186
5.3 Metal-Free Organocatalysis ............................ 191
5.4 Conclusions ........................................... 201
6 Amino-Based Building Blocks for the Construction of
Biomolecules ............................................... 207
Andre Mann
6.1 Introduction .......................................... 207
6.2 Propargylamines (PLAs) ................................ 208
6.2.1 Synthesis of PLAs .............................. 209
6.2.2 PLAs in Synthesis .............................. 211
6.2.2.1 PLAs in the Synthesis of
Heterocycles .......................... 211
6.2.2.2 PLAs in Pd(0)-Catalyzed Processes ..... 211
6.2.2.3 PLAs in Pericyclic Reactions .......... 213
6.2.2.4 PLAs in Multicomponent Reactions
(MCRs) ................................ 215
6.2.2.5 PLA in Radical Reactions .............. 217
6.3 irans-4-Hydroxy-(S)-proline (HYP) ..................... 217
6.3.1 Structural Transformations of HYP .............. 218
6.3.1.1 C-4 Alkylation of HYP ................. 218
6.3.1.2 C-4 Fluorination and
Fluoroalkylation of HYP ............... 218
6.3.1.3 C-3 Functionalization of HYP .......... 221
6.3.2 HYP in the Synthesis of Biomolecules ........... 221
6.3.2.1 HYP in the Synthesis of Alkaloids ..... 221
6.3.2.2 HYP in the Synthesis of Kainic Acid
Derivatives ........................... 222
6.3.2.3 HYP in the Synthesis of Amino
Sugars ................................ 222
6.3.2.4 Hepatitis С Inhibitors ................ 224
6.4 L-Serine (SER) ........................................ 224
6.4.1 SER and SER Derivatives in the Synthesis of
Biomolecules ................................... 225
6.4.1.1 SER in the Synthesis of Carbolines .... 225
6.4.1.2 SER in the Synthesis of Furanomycin ... 226
6.4.1.3 SER in the Synthesis of
Diketopiperazine Alkaloids ............ 226
6.4.1.4 SER in the Synthesis of Cleomycin ..... 226
6.4.1.5 SER in the Synthesis of Piperidine
Alkaloids ............................. 228
6.4.1.6 SER in the Synthesis of
Nonproteinogenic Amino Acids .......... 228
6.4.1.7 SER in the Synthesis of α, α'-
Diaminoacids .......................... 229
6.4.1.8 SER in the Synthesis of Rigidified
Glutamic Acid ......................... 230
6.5 4.Methoxypyridine (MOP) ............................... 230
6.5.1 MOP in the Synthesis of Biomolecules ........... 231
6.5.1.1 MOP in the Synthesis of Alkaloids ..... 231
6.5.1.2 MOP in the Synthesis of Plumerinine ... 232
6.5.1.3 MOP in the Synthesis of 2,4-
Disubstituted Piperidines ............. 234
6.5.1.4 MOP in the Synthesis of Toxins ........ 234
6.5.1.5 MOP in the Synthesis of Tropanes ...... 235
6.6 Aziridines (AZIs) ..................................... 236
6.6.1 AZIs in the Synthesis of Biomolecules .......... 236
6.6.1.1 AZIs in the Synthesis of
1,2-Diamines .......................... 236
6.6.1.2 AZIs in the Synthesis of a-Amino
Acids ................................. 237
6.6.1.3 AZI in the Synthesis of Ferruginine,
an Acetylcholine Receptor ............. 238
6.6.1.4 AZIs in the Synthesis of Tryptophan
Derivatives ........................... 238
6.6.1.5 AZIs in the Synthesis of
Functionalized Piperidines ............ 239
6.6.1.6 An AZI in the Synthesis of the
Alkaloid Pumiliotoxin ................. 240
6.6.1.7 An AZI in the Synthesis of
Phenylkainic Acid ..................... 240
6.6.1.8 AZIs in the Synthesis of
Pseudodistomin Alkaloids .............. 241
6.7 Homoallylamine (HAM) .................................. 242
6.7.1 Synthesis of HAMs .............................. 242
6.7.2 HAMs in the Synthesis of Biomolecules .......... 243
6.7.2.1 HAM in the Synthesis of
Imidazoazepines ....................... 243
6.7.2.2 HAMs in the Synthesis of Alkaloids .... 244
6.7.2.3 HAMs in the Synthesis of Piperidine
Derivatives ........................... 246
6.7.2.4 HAMs in the Synthesis of Chiral
Heterocycles .......................... 247
6.8 Indole (IND) .......................................... 247
6.8.1 Synthesis of Indoles ........................... 248
6.8.2 INDs in the Synthesis of Biomolecules .......... 251
6.9 Conclusion ............................................ 252
7 Aminated Sugars, Synthesis, and Biological Activity ........ 257
Francesco Nicotra, Barbara La Ferla, and Cristina Airoldi
7.1 Biological Relevance of Aminated Sugars ............... 257
7.1.1 N-Acetylneuraminic Acid ........................ 257
7.1.2 Sialyl Lewis X ................................. 258
7.1.3 Tumor-Associated Antigens ...................... 259
7.1.4 Chitin and Chitosan ............................ 260
7.1.5 Bacterial Polysaccharides ...................... 260
7.1.6 Glycosaminoglycans ............................. 261
7.1.7 Iminosugars .................................... 262
7.1.8 Sugar Amino Acids .............................. 264
7.2 Synthesis of Aminated Sugars .......................... 266
7.2.1 Amination at the Anomeric Center ............... 266
7.2.1.1 Amination Exploiting Carbonyl
Reactivity ............................ 267
7.2.1.2 Amination Exploiting Oxonium Ion
Reactivity ............................ 270
7.2.2 Amination in the Sugar Chain ................... 273
7.2.2.1 Amino Sugars by Nucleophilic
Displacement .......................... 273
7.2.2.2 Amino Sugars through Intramolecular
Displacements ......................... 279
7.2.2.3 Amino Sugars by Reductive Amination ... 279
7.2.3 Amination of Glycals ........................... 283
7.2.4 Amination through Ring-Opening of Epoxides ..... 287
7.3 Synthesis of Iminosugars .............................. 288
7.3.1 Amination at the Anomeric center with
Subsequent Cyclization ......................... 290
7.3.1.1 Exploitation of the Reactivity of
the Carbonyl Function ................. 290
7.3.1.2 Exploitation of the Reactivity of
Lactones .............................. 291
7.3.1.3 Insertion of a New Electrophile ....... 292
7.3.2 Amination at the Carbohydrate Chain and
Subsequent Cyclization ......................... 293
7.3.3 Concomitant Insertion of Nitrogen at Both
Carbon Atoms ................................... 297
7.4 Conclusions ........................................... 300
8 Selective ЛГ-Derivatization of Aminoglycosides en Route
to New Antibiotics and Antivirals .......................... 305
Floris Louis van Delft
8.1 Aminoglycoside Antibiotics ............................ 305
8.2 RNA Targeting by Aminoglycosides ...................... 308
8.3 The Role of Amino Functions in RNA Binding ............ 310
8.4 Development of RNA-Targeting Drugs .................... 312
8.4.1 Regioselective N-Modification of Naturally
Occurring Aminoglycosides ...................... 313
8.4.2 Neamine-Based RNA ligands ................... 321
8.5 Concluding Remarks .................................... 327
9 Evolution of Transition Metal-Catalyzed Amination
Reactions: the Industrial Approach ......................... 333
Ulrich Scholz
9.1 Introduction: First Steps in the Field of Catalytic
Aromatic Amination .................................... 333
9.2 Alternatives to Transition Metal-Catalyzed
Arylamination ......................................... 335
9.2.1 Reduction of Nitroarenes ....................... 335
9.2.1.1 Transfer Hydrogenation ................ 335
9.2.1.2 Direct Hydrogenation .................. 336
9.2.1.3 Other Methods for Nitro Reductions .... 336
9.2.2 Transition Metal-Free Alternatives for Amine-
Halogen Exchange ............................... 337
9.2.2.1 Metal-Free Replacement of Halogens
with Amines ........................... 337
9.2.2.2 The Chichibabin Reaction .............. 338
9.2.2.3 The Nucleophilic Aromatic
Substitution of Hydrogen (NASH
Reaction) ............................. 339
9.2.2.4 Aromatic Amination by Use of Azides ... 339
9.2.2.5 The Minisci Reaction .................. 340
9.2.2.6 The Bucherer Reaction ................. 340
9.2.2.7 Metal-Free Replacement of Nitro
Groups by Amines ...................... 341
9.2.2.8 Metal-Free Replacement of Sulfonic
Acid Esters by Amines ................. 341
9.3 The Quest for Industrial Applications of Transition
Metal-Catalyzed Arylamination ......................... 341
9.3.1 Industrial-Scale Halogen-Amine Exchanges ....... 342
9.3.2 Transition Metal-Catalyzed Direct Amination
of Aromatic Compounds .......................... 345
9.3.3 Industrial-Scale Aminolysis of Phenols ......... 345
9.4 Copper-Catalyzed Processes - More Recent
Developments .......................................... 346
9.4.1 Alternative Arylating Agents ................... 346
9.4.2 Catalyst Tuning ................................ 347
9.5 Palladium-Catalyzed Processes ......................... 353
9.5.1 Early Developments ............................. 353
9.5.2 Ligand Developments ............................ 355
9.5.3 Other Components of the Reaction ............... 361
9.6 Nickel-Catalyzed Processes ............................ 361
9.7 Summary ............................................... 363
Index ......................................................... 377
|