27. Gecko Feet: Natural Attachment Systems for Smart
Adhesion-Mechanism, Modeling, and Development of
Bio-Inspired Materials
Bharat Bhushan, Robert A. Sayer .......................... 1
27.1. Introduction .......................................... 1
27.2. Tokay Gecko ........................................... 2
27.2.1. Construction of Tokay Gecko ................... 2
27.2.2. Other Attachment Systems ...................... 5
27.2.3. Adaptation to Surface Roughness ............... 7
27.2.4. Peeling ....................................... 8
27.2.5. Self-Cleaning ................................ 10
27.3. Attachment Mechanisms ................................ 12
27.3.1. Van der Waals Forces ......................... 12
27.3.2. Capillary Forces ............................. 13
27.4. Experimental Adhesion Test Techniques and Data ....... 14
27.4.1. Adhesion Under Ambient Conditions ............ 15
27.4.2. Effects of Temperature ....................... 17
27.4.3. Effects of Humidity .......................... 18
27.4.4. Effects of Hydrophobicity .................... 18
27.5. Adhesion Modeling .................................... 19
27.5.1. Spring Model ................................. 21
27.5.2. Single Spring Contact Analysis ............... 21
27.5.3. The Multilevel Hierarchical Spring
Analysis ..................................... 23
27.5.4. Adhesion Results for the Gecko Attachment
System Contacting a Rough Surface ............ 26
27.5.5. Capillarity Effects .......................... 30
27.5.6. Adhesion Results that Account for
Capillarity Effects .......................... 31
27.6. Modeling of Biomimetic Fibrillar Structures .......... 34
27.6.1. Fiber Model .................................. 34
27.6.2. Single Fiber Contact Analysis ................ 34
27.6.3. Constraints .................................. 35
27.6.4. Numerical Simulation ......................... 39
27.6.5. Results and Discussion ....................... 41
27.7. Fabrication of Biomimetric Gecko Skin ................ 48
27.7.1. Single-Level Hierarchical Structures ......... 49
27.7.2. Multilevel Hierarchical Structures ........... 53
27.8. Closure .............................................. 55
Appendix ................................................... 56
References ................................................. 59
28. Carrier Transport in Advanced Semiconductor Materials
Filippo Giannazzo, Patrick Fiorenza, Vito Raineri ....... 63
28.1. Majority Carrier Distribution in Semiconductors:
Imaging and Quantification ........................... 64
28.1.1. Basic Principles of SCM ...................... 64
28.1.2. Carrier Imaging Capability by SCM ............ 67
28.1.3. Quantification of SCM Raw Data ............... 70
28.1.4. Basic Principles of SSRM ..................... 78
28.1.5. Carrier Imaging Capability by SSRM ........... 81
28.1.6. Quantification of SSRM Raw Data .............. 81
28.1.7. Drift Mobility by SCM and SSRM ............... 85
28.2. Carrier Transport Through Metal-Semiconductor
Barriers by C-AFM .................................... 88
28.3. Charge Transport in Dielectrics by C-AFM ............. 93
28.3.1. Direct Determination of Breakdown ............ 97
28.3.2. Weibull Statistics by C-AFM .................. 99
28.4. Conclusion .......................................... 101
References ................................................ 101
29. Visualization of Fixed Charges Stored in Condensed
Matter and Its Application to Memory Technology
Yasuo Cho .............................................. 105
29.1. Introduction ........................................ 105
29.2. Principle and Theory for SNDM ....................... 106
29.3. Microscopic Observation of Area Distribution of
the Ferroelectric Domain Using SNDM ................. 107
29.4. Visualization of Stored Charge in Semiconductor
Flash Memories Using SNDM ........................... 109
29.5. Higher-Order SNDM ................................... 110
29.6. Noncontact SNDM ..................................... 111
29.7. SNDM for 3D Observation of Nanoscale Ferroelectric
Domains ............................................. 112
29.8. Next-Generation Ultra-High-Density Ferroelectric
Data Storage Based on SNDM .......................... 114
29.8.1. Overview of Ferroelectric Data Storage ...... 114
29.8.2. SNDM Nanodomain Engineering System and
Ferroelectric Recording Medium .............. 116
29.8.3. Nanodomain Formation in а LiTaO3
Single Crystal .............................. 117
29.8.4. High-Speed Switching of Nanoscale
Ferroelectric Domains in Congruent
Single-Crystal LiTa03 ....................... 120
29.8.5. Prototype of a High-Density Ferroelectric
Data Storage System ......................... 122
29.8.6. Realization of 10 Tbit/in.2 Memory
Density ..................................... 126
29.9. Outlook ............................................. 128
References ................................................ 129
30. Applications of Scanning Probe Methods in
Chemical Mechanical Planarization
Toshi Kasai, Bharat Bhushan ............................ 131
30.1. Overview of CMP Technology and the Need for SPM ..... 131
30.1.1. CMP Technology and Its Key Elements ......... 131
30.1.2. Various CMP Processes and the Need
for SPM ..................................... 134
30.2. AFP for the Evaluation of Dishing and Erosion ....... 137
30.3. Surface Planarization and Roughness
Characterization in CMP Using AFM ................... 141
30.4. Use of Modified Atomic Force Microscope Tips
for Fundamental Studies of CMP Mechanisms ........... 144
30.5. Conclusions ......................................... 149
References ................................................ 149
31. Scanning Probe Microscope Application for Single
Molecules in а π-Conjugated Polymer Toward Molecular
Devices Based on Polymer Chemistry
Ken-ichi Shinohara ..................................... 153
31.1. Introduction ........................................ 153
31.2. Chiral Helical π-Conjugated Polymer ................. 154
31.2.1. Helical Chirality of а π-Conjugated Main
Chain Induced by Polymerization of
Phenylacetylene with Chiral Bulky Groups .... 156
31.2.2. Direct Measurement of the Chiral
Quaternary Structure in a π-Conjugated
Polymer ..................................... 158
31.2.3. Direct Measurement of Structural Diversity
in Single Molecules of a Chiral Helical
π-Conjugated Polymer ........................ 163
31.2.4. Dynamic Structure of Single Molecules
in a Chiral Helical π-Conjugated Polymer
by a High-Speed AFM ......................... 166
31.3. Supramolecular Chiral π-Conjugated Polymer .......... 169
31.3.1. Simultaneous Imaging of Structure and
Fluorescence of a Supramolecular Chiral
π-Conjugated Polymer ........................ 169
31.3.2. Dynamic Structure of a Supramolecular
Chiral π-Conjugated Polymer by a High-
Speed AFM ................................... 177
References ................................................ 181
32. Scanning Probe Microscopy on Polymer Solar Cells
Joachim Loos, Alexander Alexeev ........................ 183
32.1. Brief Introduction to Polymer Solar Cells ........... 184
32.2. Sample Preparation and Characterization
Techniques .......................................... 188
32.3. Morphology Features of the Photoactive Layer ........ 190
32.3.1. Influence of Composition and Solvents on
the Morphology of the Active Layer .......... 190
32.3.2. Influence of Annealing ...................... 193
32.3.3. All-Polymer Solar Cells ..................... 199
32.4. Nanoscale Characterization of Properties of the
Active Layer ........................................ 201
32.4.1. Local Optical Properties As Measured by
Scanning Near-Field Optical Microscopy ...... 201
32.4.2. Characterization of Nanoscale Electrical
Properties .................................. 203
32.5. Summary and Outlook ................................. 212
References ................................................ 213
33. Scanning Probe Anodization for Nanopatterning
Hiroyuki Sugimura ...................................... 217
33.1. Introduction ........................................ 217
33.2. Electrochemical Origin of SPM-Based Local
Oxidation ........................................... 218
33.3. Variation in Scanning Probe Anodization ............. 223
33.3.1. Patternable Materials in Scanning Probe
Anodization ................................. 223
33.3.2. Environment Control in Scanning Probe
Anodization ................................. 226
33.3.3. Electrochemical Scanning Surface
Modification Using Cathodic Reactions ....... 229
33.4. Progress in Scanning Probe Anodization .............. 232
33.4.1. From STM-Based Anodization to AFM-Based
Anodization ................................. 232
33.4.2. Versatility of AFM-Based Scanning Probe
Anodization ................................. 233
33.4.3. In Situ Characterization of Anodized
Structures by AFM-Based Methods ............. 233
33.4.4. Technical Development of Scanning Probe
Anodization ................................. 237
33.5. Lithographie Applications of Scanning Probe
Anodization ......................................... 239
33.5.1. Device Prototyping .......................... 239
33.5.2. Pattern Transfer from Anodic Oxide to
Other Materials ............................. 240
33.5.3. Integration of Scanning Probe Lithography
with Other High-Throughput Lithographies .... 247
33.5.4. Chemical Manipulation of Nano-objects
by the Use of a Nanotemplate Prepared
by Scanning Probe Anodization ............... 248
33.6. Conclusion .......................................... 251
References ................................................ 251
34. Tissue Engineering: Nanoscale Contacts in Cell Adhesion
to Substrates
Mario D'Acunto, Paolo Giusti, Franco Maria
Montevecchi, Gianluca Ciardelli ........................ 257
34.1. Tissue Engineering: A Brief Introduction ............ 257
34.2. Fundamental Features of Cell Motility
and Cell-Substrates Adhesion ........................ 261
34.2.1. Biomimetic Scaffolds, Roughness, and
Contact Guidance for Cell Adhesion
and Motility ................................ 268
34.3. Experimental Strategies for Cell-ECM Adhesion
Force Measurements .................................. 271
34.4. Conclusions ......................................... 279
34.5. Glossary ............................................ 279
References ................................................ 280
35. Scanning Probe Microscopy in Biological Research
Tatsuo Ushiki, Kazushige Kawabata ...................... 285
35.1. Introduction ........................................ 285
35.2. SPM for Visualization of the Surface of
Biomaterials ........................................ 286
35.2.1. Advantages of AFM in Biological Studies ..... 286
35.2.2. AFMofBiomolecules ........................... 287
35.2.3. AFM of Isolated Intracellular and
Extracellular Structures .................... 289
35.2.4. AFM of Tissue Sections ...................... 292
35.2.5. AFM of Living Cells and Their Movement ...... 292
35.2.6. Combination of AFM with Scanning Near-
Field Optical Microscopy for Imaging
Biomaterials ................................ 294
35.3. SPM for Measuring Physical Properties of
Biomaterials ........................................ 296
35.3.1. Evaluation Methods of Viscoelasticity ....... 296
35.3.2. Examples for Viscoelasticity Mapping
Measurements ................................ 299
35.3.3. Combination of Viscoelasticity Measurement
with Other Techniques ....................... 302
35.4. SPM as a Manipulation Tool in Biology ............... 304
35.5. Conclusion .......................................... 306
References ................................................ 306
36. Novel Nanoindentation Techniques and Their Applications
Jiping Ye .............................................. 309
36.1. Introduction ........................................ 309
36.2. Basic Principles of Contact ......................... 311
36.2.1. Meyer's Law ................................. 311
36.2.2. Elastic Contact Solution .................... 312
36.3. Tip Rigidity and Geometry ........................... 313
36.4. Hardness and Modulus Measurements ................... 314
36.4.1. Analysis Method ............................. 314
36.4.2. Practical Application Aspects ............... 316
36.4.3. Recent Applications ......................... 320
36.5. Yield Stress and Modulus Measurements ............... 324
36.5.1. Analysis Method ............................. 324
36.5.2. Recent Applications ......................... 326
36.6. Work-Hardening Rate and Exponent Measurements ....... 329
36.6.1. Analysis Method ............................. 329
36.6.2. Practical Application Aspects ............... 333
36.6.3. Recent Applications ......................... 335
36.7. Viscoelastic Compliance and Modulus ................. 336
36.7.1. Analysis Method ............................. 336
36.7.2. Practical Application Aspects ............... 339
36.8. Other Mechanical Characteristics .................... 342
36.9. Outlook ............................................. 343
References ................................................ 343
37. Applications to Nano-Dispersion Macromolecule Material
Evaluation in an Electrophotographic Printer
Yasushi Kadota ......................................... 347
37.1. Introduction ........................................ 347
37.2. Electrophotographic Processes ....................... 348
37.2.1. Principle and Characteristics of an
Electrophotographic System .................. 348
37.2.2. Microcharacteristic and Analysis
Technology for Functional Components ........ 349
37.3. SPM Applications to Electrophotographic Systems ..... 352
37.3.1. Measurement of Electrostatic Charge
of Toner .................................... 352
37.3.2. Measurement of the Adhesive Force Between
a Particle and a Substrate .................. 353
37.3.3. Observation of a Nanodispersion
Macromolecule Interface—Toner Adhesion to
a Fusing Roller ............................. 355
37.4. Current Technology Subjects ......................... 357
References ................................................ 357
38. Automated AFM as an Industrial Process Metrology Tool
for Nanoelectronic Manufacturing
Tianming Bao, David Fong, Sean Hand .................... 359
38.1. Introduction ........................................ 359
38.2. Dimensional Metrology with AFM ...................... 361
38.2.1. Dimensional Metrology ....................... 361
38.2.2. AFM Scanning Technology ..................... 362
38.2.3. AFM Probe Technology ........................ 367
38.2.4. AFM Metrology Capability .................... 367
38.3. Applications in Semiconductors — Logic and
Memory Integrated Circuits .......................... 370
38.3.1. Shallow Trench Isolation Resist Pattern ..... 370
38.3.2. STI Etch .................................... 372
38.3.3. STI CMP ..................................... 375
38.3.4. Gate Resist Pattern ......................... 378
38.3.5. Gate Etch ................................... 379
38.3.6. FinFET Gate Formation ....................... 383
38.3.7. Gate Sidewall Spacer ........................ 385
38.3.8. Strained SiGe Source/Drain Recess ........... 385
38.3.9. Pre-metal Dielectric CMP .................... 386
38.3.10.Contact and Via Photo Pattern ............... 387
38.3.11.Contact Etch ................................ 387
38.3.12.Contact CMP ................................. 389
38.3.13.Metal Trench Photo Pattern .................. 390
38.3.14.Metal Trench Etch ........................... 390
38.3.15.Via Etch .................................... 392
38.3.16.Via Etch .................................... 394
38.3.17.Roughness ................................... 396
38.3.18.LWR, LER, and SWR ........................... 397
38.3.19.DRAM DT Capacitor ........................... 397
38.3.20 Ferroelectric RAM Capacitor ................. 398
38.3.21.Optical Proximity Correction ................ 398
38.4. Applications in Photomask ........................... 399
38.4.1. Photomask Pattern and Etch .................. 399
38.4.2. Photomask Defect Review and Repair .......... 400
38.5. Applications in Hard Disk Manufacturing ............. 401
38.5.1. Magnetic Thin-Film Recording Head ........... 401
38.5.2. Slider for Hard Drive ....................... 405
38.6. Applications in Microelectromechanical
System Devices ...................................... 406
38.6.1. Contact Image Sensor ........................ 406
38.6.2. Digital Light Processor Mirror Device ....... 408
38.7. Challenge and Potential Improvement ................. 408
38.8. Conclusion .......................................... 409
References ................................................ 411
Subject Index ................................................. 413
|