13. Ultrathin Fullerene-Based Films via STM and STS
Luca Gavioli, Cinzia Cepek ............................... 1
13.1. Introduction .......................................... 1
13.2. Basic Principles of STM and STS ....................... 2
13.3. Survey of Fullerene-Based Systems ..................... 4
13.3.1. Bulk Properties ............................... 4
13.3.2. Electronic Structure .......................... 6
13.3.3. Alkali-Metal-Doped C60 ......................... 8
13.3.4. Interaction of C60 with Surfaces .............. 10
13.4. Summary .............................................. 17
References ................................................. 18
14. Quantitative Measurement of Materials Properties
with the (Digital) Pulsed Force Mode
Alexander M. Gigler, Othmar Marti ....................... 23
14.1. Introduction ......................................... 23
14.2. Modes of Intermittent Operation ...................... 24
14.2.1. Destructive Versus Nondestructive
Measurements ................................. 25
14.2.2. The Pulsed Force Mode ........................ 26
14.2.3. Operating Principle of the Pulsed
Force Mode ................................... 26
14.2.4. Analog Pulsed Force Mode ..................... 32
14.2.5 Digital Pulsed Force Mode ..................... 32
14.3. Contact Mechanics Relevant for Pulsed Force Mode
Investigations ....................................... 33
14.3.1. Hertz Model .................................. 33
14.3.2. Sneddon's Extensions to the Hertz Model ...... 36
14.4. Models Incorporating Adhesion ........................ 37
14.4.1. Data Processing .............................. 39
14.4.2. Polymers ..................................... 42
14.4.3. Other Applications ........................... 47
14.4.4. Pulsed Force Mode and Friction
Measurements ................................. 47
14.4.5. Cell Mechanics ............................... 50
14.5. Summary .............................................. 51
References ................................................. 52
15. Advances in SPMs for Investigation and Modification
of Solid-Supported Monolayers
Bruno Pignataro ......................................... 55
15.1. Introduction ......................................... 55
15.2. SSMs and Their Preparation ........................... 57
15.2.1. Self-Assembled Monolayers .................... 57
15.2.2. LB Monolayers ................................ 60
15.3. Fundamental and Technological Applications of SSMs ... 61
15.4. Characterization and Modification of SSMs ............ 64
15.4.1. Characterization of SSMs ..................... 64
15.4.2. Modification of SSMs ......................... 67
15.5. Latest Advances in SPMs and Applications for
Imaging of SSMs ...................................... 67
15.5.1. Dynamic SFM in the Attractive Regime ......... 69
15.5.2. Dynamic SFM at Different Level of
Interaction Forces ........................... 71
15.6. Nanopatterning by SPMs and SSMs ...................... 76
15.6.1. Addition Nanolithography ..................... 76
15.6.2. Elimination and Substitution
Nanolithography .............................. 78
15.6.3. Nanoelectrochemical Lithography .............. 79
15.6.4. 3D Nanolithography ........................... 82
15.7. Conclusions and Perspectives ......................... 84
References ................................................. 85
16. Atomic Force Microscopy Studies of the
Mechanical Properties of Living Cells
Felix Rico, Ewa P. Wojcikiewicz, Vincent T. Moy ......... 89
16.1. Introduction ......................................... 89
16.2. Principle of Operation ............................... 90
16.2.1. AFM Imaging .................................. 92
16.2.2. Force Measurements ........................... 92
16.3. Cell Viscoelasticity ................................. 93
16.3.1. AFM Tip Geometries ........................... 94
16.3.2. Elasticity: Young's Modulus .................. 94
16.3.3. Viscoelasticity: Complex Shear Modulus ....... 96
16.3.4. Cell Adhesion ................................ 98
16.4. Concluding Remarks and Future Directions ............ 104
References ................................................ 105
17. Towards a Nanoscale View of Microbial Surfaces
Using the Atomic Force Microscope
Claire Verbelen, Guillaume Andre, Xavier Haulot,
Yann Gilbert, David Alsteens, Etienne Dague and
Yves F. Dufrêne ........................................ 111
17.1. Introduction ........................................ 111
17.2. Imaging ............................................. 112
17.2.1. Sample Preparation .......................... 112
17.2.2. Visualizing Membrane Proteins at
Subnanometer Resolution ..................... 112
17.2.3. Live-Cell Imaging ........................... 113
17.3. Force Spectroscopy .................................. 116
17.3.1. Customized Tips ............................. 116
17.3.2. Probing Nanoscale Elasticity and Surface
Properties .................................. 117
17.3.3. Stretching Cell Surface Polysaccharides
and Proteins ................................ 119
17.3.4. Nanoscale Mapping and Functional Analysis
of Molecular Recognition Sites .............. 120
17.4. Conclusions ......................................... 123
References ................................................ 124
18. Cellular Physiology of Epithelium and Endothelium
Christoph Riethmüller, Hans Oberleithner .................. 127
18.1. Introduction ........................................ 127
18.2. Epithelium .......................................... 128
18.2.1. Transport Through a Septum .................. 128
18.2.2. In the Kidney ............................... 130
18.3. Endothelium ......................................... 136
18.3.1. Paracellular Gaps ........................... 137
18.3.2. Cellular Drinking ........................... 139
18.3.3. Wound Healing ............................... 142
18.3.4. Transmigration of Leukocytes ................ 143
18.4. Technical Remarks ................................... 144
18.5. Summary ............................................. 145
References ................................................ 145
19. Application of Atomic Force Microscopy to the Study
of Expressed Molecules in or on a Single Living Cell
Hyonchol Kim, Hironori Uehara, Rehana Afrin,
Hiroshi Sekiguchi, Hideo Arakawa, Toshiya Osada,
Atsushi Ikai ........................................... 149
19.1. Introduction ........................................ 150
19.2. Methods of Manipulation To Study Molecules in or
on a Living Cell Using an AFM ....................... 151
19.2.1. AFM Tip Preparation To Manipulate
Receptors on a Cell Surface ................. 151
19.2.2. Analysis of Molecular Interactions Where
Multiple Bonds Formed ....................... 153
19.2.3. Measurement of Single-Molecule Interaction
Strength on Soft Materials .................. 155
19.3. Observation of the Distribution of Specific
Receptors on a Living Cell Surface .................. 156
19.3.1. Distribution of Fibronectin Receptors on
a Living Fibroblast Cell .................... 156
19.3.2. Distribution of Vitronectin Receptors
on a Living Osteoblast Cell ................. 159
19.3.3. Quantification of the Number of
Prostaglandin Receptors on a Chinese
Hamster Ovary Cell Surface .................. 161
19.4. Further Application of the AFM to the Study
of Single-Cell Biology .............................. 164
19.4.1. Manipulation of Expressed mRNAs in
a Living Cell Using an AFM .................. 164
19.4.2. Manipulation of Membrane Receptors
on a Living Cell Surface Using an AFM ....... 170
References ................................................ 173
20. What Can Atomic Force Microscopy Say About
Amyloid Aggregates?
Amalisa Relini, Ornella Cavalleri, Claudio Canale,
Tiziana Svaldo-Lanero, Ranieri Rolandi, Alessandra
Gliozzi ................................................ 177
20.1. Introduction ........................................ 178
20.2. Techniques and Methods Used To Study
Amyloid Aggregates .................................. 181
20.2.1. Optical Methods ............................. 182
20.2.2. Electron Microscopy ......................... 183
20.2.3. X-ray Diffraction ........................... 185
20.2.4. Nuclear Magnetic Resonance .................. 185
20.2.5 Atomic Force Microscopy ...................... 186
20.3. Monitoring the Aggregation Process by AFM ........... 188
20.4. Effect of Surfaces on the Aggregation Process ....... 190
20.5 Interaction with Model Membranes ..................... 193
20.6 Physical Properties of Fibrils Obtained by AFM ....... 197
References ................................................ 201
21. Atomic Force Microscopy: Interaction Forces Measured in
Phospholipid Monolayers, Bilayers and Cell Membranes
Zoya Leonenko, David Cramb, Matthias Amrein,
Eric Finot ............................................. 207
21.1. Introduction ........................................ 207
21.2. Phase Transitions of Lipid Bilayers in Water ........ 209
21.2.1. Morphology Change During Lamellar
Phase Transition ............................ 210
21.2.2. Change in Forces During Phase Transition .... 212
21.3. Force Measurements on Pulmonary Surfactant
Monolayers in Air ................................... 219
21.3.1. Adhesion Measurements: Monolayer Stiffness
and Function ................................ 221
21.3.2. Repulsive Forces: The Interaction of
Charged Airborne Particles with
Surfactant .................................. 222
21.4. Interaction Forces Measured on Lung Epithelial
Cells in Buffer ..................................... 224
21.4.1. Cell Culture/Force Measurement Setup ........ 225
21.4.2. Mechanical Properties ....................... 227
21.5 Conclusions .......................................... 230
References ................................................ 231
22. Self-Assembled Monolayers on Aluminum and Copper Oxide
Surfaces: Surface and Interface Characteristics,
Nanotribological Properties, and Chemical Stability
E. Hoque, J. A. DeRose, В. Bhushan, H. J. Mathieu ...... 235
22.1. Introduction ........................................ 236
22.2. Substrate Preparation ............................... 238
22.2.1. Aluminum .................................... 238
22.2.2. Copper ...................................... 239
22.3. Phosphonic Acid and Silane Based SAMs
on Al and Cu ........................................ 239
22.3.1. SAM Preparation ............................. 239
22.3.2. Surface and Interface Characterization ...... 240
22.3.3. Nanotribological Properties ................. 261
22.3.4. Chemical Stability .......................... 268
22.4. Summary ............................................. 277
References ................................................ 279
23. High Sliding Velocity Nanotribological Investigations
of Materials for Nanotechnology Applications
Nikhil S. Tambe, Bharat Bhushan ........................ 283
23.1. Bridging Science and Engineering for
Nanotribological Investigations ..................... 283
23.1.1. Microtribology/Nanotribology ................ 284
23.1.2. Historical Perspective for Velocity
Dependence of Friction ...................... 284
23.2. Need for Speed: Extending the AFM Capabilities
for High Sliding Velocity Studies ................... 285
23.2.1. Modifications to the Commercial AFM Setup ... 287
23.2.2. Friction Investigations on the Microscale/
Nanoscale at High Sliding Velocities ........ 298
23.3. Microscale/Nanoscale Friction and Wear Studies
at High Sliding Velocities .......................... 300
23.3.1. Nanoscale Friction Mapping: Understanding
Normal Load and Velocity Dependence of
Friction Force .............................. 301
23.3.2. Nanoscale Wear Mapping: Wear Studies
at High Sliding Velocities .................. 303
23.4. Closure ............................................. 308
References ................................................ 309
24. Measurement of the Mechanical Properties of
One-Dimensional Polymer Nanostructures by AFM
Sung-Kyoung Kim, Haiwon Lee ............................ 311
24.1. Introduction ........................................ 311
24.2. AFM-Based Techniques for Measuring the Mechanical
Properties of ID Polymer Nanostructures ............. 312
24.3. Mechanical Properties of Electrospun Polymer
Nanofibers .......................................... 318
24.4. Test of Reliability of AFM-Based Measurements ....... 323
References ................................................ 327
25. Evaluating Tribological Properties of Materials for
Total Joint Replacements Using Scanning Probe Microscopy
Sriram Sundararajan, Kanaga Karuppiah Kanaga
Subramanian ............................................ 329
25.1. Introduction ........................................ 329
25.1.1. Total Joint Replacements .................... 329
25.1.2. Social and Economic Significance ............ 330
25.2. Problems Associated with Total Joint Replacements ... 330
25.2.1. Tribology ................................... 332
25.2.2. Materials ................................... 332
25.2.3. Lubrication in Joints—the Synovial Fluid .... 333
25.3. Conventional Tribological Testing of Material
Pairs for Total Joint Replacements .................. 334
25.3.1. Wear Tests .................................. 334
25.3.2. Friction Tests .............................. 334
25.4. Scanning Probe Microscopy as a Tool to Study
Tribology of Total Joint Replacements ............... 334
25.4.1. Nanotribology of Ultrahigh Molecular
Weight Polyethylene ......................... 335
25.4.2. Fretting Wear of Cobalt-Chromium Alloy ...... 343
25.5. Summary and Future Outlook .......................... 347
References ................................................ 348
26. Near-Field Optical Spectroscopy of Single
Quantum Constituents
Toshiharu Saiki ........................................ 351
26.1. Introduction ........................................ 351
26.2. General Description of NSOM ......................... 353
26.3. NSOM Aperture Probe ................................. 354
26.3.1. Basic Process of Aperture Probe
Fabrication ................................. 354
26.3.2. Tapered Structure and Optical Throughput .... 355
26.3.3. Fabrication of a Double-Tapered
Aperture Probe .............................. 356
26.3.4. Evaluation of Transmission Efficiency and
Collection Efficiency ....................... 357
26.3.5. Evaluation of Spatial Resolution with
Single QDs .................................. 358
26.4. Single-Quantum-Constituent Spectroscopy ............. 360
26.4.1. Light-Matter Interaction at the Nanoscale ... 361
26.4.2. Real-Space Mapping of an Exciton
Wavefunction Confined in a QD ............... 363
26.4.3. Carrier Localization in Cluster States
in GaNAs .................................... 367
26.5. Perspectives ........................................ 370
References ................................................ 371
Subject Index ................................................. 373
|