1. Background-Free Apertureless Near-Field Optical Imaging
Pietro Giuseppe Gucciardi, Guillaume Bachelier,
Stephan J. Stranick, Maria Allegrini ..................... 1
1.1. Introduction .......................................... 1
1.2. Principles of Apertureless SNOM ....................... 3
1.2.1. The Homodyne Apertureless SNOM Concept ........ 5
1.2.2. The Heterodyne and Pseudo-Heterodyne
Apertureless SNOM Concepts .................... 8
1.3. Interpretation of the Measured Near-Field Signal
in the Presence of a Background ....................... 9
1.3.1. Noninterferometric Detection .................. 9
1.3.2. Interferometric Detection .................... 12
1.3.3. Artifacts in Apertureless SNOM and
Identification Criteria ...................... 14
1.3.4. New Techniques for Background Removal ........ 17
1.4. Applications of Elastic-Scattering
Apertureless SNOM .................................... 17
1.4.1. Material-Specific Imaging .................... 18
1.4.2. Phase Mapping in Metallic Nanostructures
and Optical Waveguides ....................... 19
1.4.3. Tip-Induced Resonances in
Polaritonic Samples .......................... 22
1.4.4. Applications to Identification of
Biosamples ................................... 24
1.4.5. Subsurface Imaging and Superlensing .......... 25
1.5. Conclusions .......................................... 27
References ................................................. 27
2. Critical Dimension Atomic Force Microscopy for
Sub-50-nm Microelectronics Technology Nodes
Hao-Chih Liu, Gregory A. Dahlen, Jason R. Osborne ....... 31
2.1. Introduction ......................................... 32
2.1.1. AFM for Semiconductor and Data Storage
Industries ................................... 32
2.1.2. Scanning Modes: Tapping Versus Deep Trench
and CD Mode .................................. 32
2.1.3. Specialty Probes ............................. 34
2.2. Reference Metrology System and Semiconductor
Production ........................................... 34
2.2.1. Requirements for Metrology Tools ............. 37
2.2.2. AFM as a Reference Metrology System .......... 37
2.2.3. AFM as an In-Line Metrology System ........... 39
2.3. Image Analysis for Accurate Metrology ................ 40
2.3.1. Background ................................... 40
2.3.2. Conventional Tip Characterization and
Image Reconstruction ......................... 41
2.3.3. CD Tip Shape Parameters ...................... 44
2.3.4. CD Tip Shape Characterization Techniques ..... 44
2.3.5. CD Image (Reentrant) Reconstruction
Algorithms ................................... 47
2.4. Metrology Applications ............................... 52
2.4.1. Examples within Process Control .............. 52
2.4.2. "Fingerprinting" of Sample Features .......... 54
2.5. Developments in Probe Fabrication .................... 60
2.5.1. Tip-Sample Interactions: Tip Shape,
Stiffness, and Tip Wear ...................... 61
2.5.2. Tip Wear and Surface Modification ............ 64
2.5.3. Application-Oriented Probe Designs ........... 67
2.6. Outlook: CD AFM Technologies for 45-/32-/22-nm
Nodes ................................................ 70
2.6.1. Measuring Sub-50-nm Devices: System
Requirements ................................. 70
2.6.2. Probe Technology for 45-/32-nm Structures .... 71
References ................................................. 73
3. Near Field Probes: From Optical Fibers to Optical
Nanoantennas
Eugenio Cefalì, Salvatore Patanè, Salvatore Spadaro,
Renato Gardelli, Matteo Albani, Maria Allegrini ......... 77
3.1. Introduction ......................................... 77
3.2. Conventional Microscopy and Near-Field
Optical Techniques ................................... 78
3.3. The Probe ............................................ 84
3.3.1. Aperture SNOM Probes ......................... 85
3.3.2. The Apertureless Probe: Optical
Nanoantennas ................................ 118
3.4. Applications and Perspectives ....................... 127
References ................................................ 129
4. Carbon Nanotubes as SPM Tips: Mechanical Properties
of Nanotube Tips and Imaging
Sophie Marsaudon, Charlotte Bernard, Dirk Dietzel,
Cattien V. Nguyen, Anne-Marie Bonnot, Jean-Pierre
Aimé, Rudolphe Boisgard ................................ 137
4.1. Introduction ........................................ 138
4.2. CNT Tip Fabrication ................................. 140
4.2.1. MWCNTs and Fusing ........................... 141
4.2.2. SWCNTs and Direct Growth .................... 144
4.2.3. Controlling and Tailoring the Properties
of CNT Tips ................................. 148
4.3. Understanding the Mechanical Properties of CNT
Tips: A Dynamical SPM Frequency Modulation Study .... 149
4.3.1. Mechanical Properties of CNTs ............... 149
4.3.2. Mechanical Properties of CNT Tips ........... 150
4.3.3. Mechanical Properties of CNT Tips in
Dynamical Experiments: Competition Between
Elasticity and Adhesion ..................... 151
4.3.4. Experimental Signals ........................ 155
4.3.5. Mechanical Properties of MWCNTs ............. 158
4.3.6. Mechanical Properties of SWCNTs:
Main Adhesive Contribution .................. 163
4.3.7. Comparison of Mechanical Properties
of CNTs ..................................... 166
4.3.8. Special cases ............................... 170
4.4. Imaging ............................................. 174
4.4.1. Literature Tour ............................. 174
4.4.2. Using the Mechanical Properties of CNTs
for Imaging ................................. 174
4.5. Conclusion .......................................... 176
References ................................................ 178
5. Scanning Probes for the Life Sciences
Andrea M. Ho, Horacio D. Espinosa ...................... 183
5.1. Introduction ........................................ 183
5.2. Microarray Technology ............................... 184
5.2.1. Microcontact Printing ....................... 185
5.2.2. Optical Lithography ......................... 186
5.2.3. Protein Arrays .............................. 188
5.3. Nanoarray Technology ................................ 189
5.3.1. The Push for Nanoscale Detection ............ 189
5.3.2. Probe-Based Patterning ...................... 191
5.3.3. Alternative Patterning Methods .............. 202
5.4. Nanoscale Deposition Mechanisms ..................... 204
5.5. AFM Parallelization ................................. 207
5.5.1. One-Dimensional Arrays ...................... 208
5.5.2. Two-Dimensional Arrays ...................... 209
5.6. Future Prospects for Nanoprobes ..................... 212
References ................................................ 214
6. Self-Sensing Cantilever Sensor for Bioscience
Hayato Sone, Sumio Hosaka .............................. 219
6.1. Introduction ........................................ 219
6.2. Basics of the Cantilever Mass Sensor ................ 220
6.3. Finite Element Method Simulation of the
Cantilever Vibration ................................ 223
6.4. Detection of Cantilever Deflection .................. 226
6.4.1. Using a Position Sensor ..................... 226
6.4.2. Using a Piezoresistive Sensor ............... 227
6.5. Self-Sensing Systems ................................ 232
6.5.1. Vibration Systems ........................... 232
6.5.2. Vibration-Frequency Detection Systems ....... 232
6.6. Applications ........................................ 233
6.6.1. Water Molecule Detection in Air ............. 233
6.6.2. Antigen and Antibody Detection in Water ..... 238
6.7. Prospective Applications ............................ 244
References ................................................ 244
7. AFM Sensors in Scanning Electron and Ion Microscopes:
Tools for Nanomechanics, Nanoanalytics, and
Nanofabrication
Vinzenz Friedli, Samuel Hoffmann, Johann Michler,
Ivo Utke ............................................... 247
7.1. Introduction 248
7.2. Description of Standalone Techniques ................ 250
7.2.1. FEB/FIB Nanofabrication ..................... 250
7.2.2. Cantilever as a Static Force Sensor ......... 255
7.2.3. Cantilever as a Resonating Mass Sensor ...... 255
7.2.4. Nanomanipulation ............................ 256
7.3. Fundamentals of Cantilever-Based Sensors ............ 257
7.3.1. Static Operation—Force Sensors .............. 257
7.3.2. Dynamic Operation—Mass Sensors .............. 258
7.3.3. Sensor Scaling .............................. 263
7.3.4. Cantilever Calibration ...................... 264
7.3.5. Temperature Stability ....................... 265
7.3.6. Piezoresistive Detection .................... 267
7.4. Analytics at the Nanoscale .......................... 268
7.4.1. Nanomechanics ............................... 268
7.4.2. Cantilever-Based Gravimetry ................. 276
7.4.3. Atomic Force Microscopy in a SEM ............ 282
7.5. Perspectives and Outlook ............................ 283
References ................................................ 284
8. Cantilever Spring-Constant Calibration in Atomic Force
Microscopy
Peter J. Cumpson, Charles A. Clifford, Jose F.
Portoles, James E. Johnstone, Martin Munz .............. 289
8.1. Introduction ........................................ 289
8.2. Applications of AFM ................................. 291
8.3. Force Measurements and Spring-Constant
Calibration ......................................... 292
8.3.1. Theoretical Methods ......................... 292
8.3.2. V-Shaped Cantilevers and the Parallel-Beam
Approximation ............................... 293
8.3.3. Dynamic Experimental Methods ................ 295
8.3.4. Thermal Methods ............................. 297
8.4. Repeatability in AFM Force Measurements ............. 299
8.4.1. z-Axis Displacement Repeatability ........... 300
8.4.2. Cantilever Deflection Repeatability ......... 300
8.5. Microfabricated Devices for AFM Force Calibration ... 302
8.6. Lateral Force Calibration ........................... 308
References ................................................ 312
9. Frequency Modulation Atomic Force Microscopy in Liquids
Suzanne P. Jarvis, John E. Sader, Takeshi Fukuma ....... 315
9.1. Introduction ........................................ 315
9.2. Instrumentation ..................................... 318
9.2.1. Basic Setup for FM-AFM ...................... 318
9.2.2. Cantilever Excitation in a Liquid ........... 319
9.2.3. Cantilever-Deflection Detection ............. 320
9.3. Applications ........................................ 326
9.3.1. Nonbiological Systems ....................... 326
9.3.2. Biological Systems .......................... 327
9.4. Theoretical Framework for Quantitative FM-AFM
Force Measurements .................................. 332
9.4.1. Decomposition of Interaction Force .......... 332
9.4.2. Governing Equations ......................... 335
9.4.3. Fundamental Conditions on
Interaction Force ........................... 336
9.4.4. Determination of Forces ..................... 337
9.4.5. Validation of Formulas ...................... 339
9.5. Operation in a Fluid ................................ 340
9.5.1. Governing Equations and Resonance
Frequency in a Fluid ........................ 340
9.5.2. Validation of FM-AFM Force Measurements
in a Liquid ................................. 342
9.6. Phase Detuning in FM-AFM ............................ 343
9.6.1. Governing Equations for Arbitrary Phase
Shift ....................................... 344
9.6.2. Coupling of Conservative and Dissipative
Forces ...................................... 345
9.6.3. Operation of FM-AFM Away From the
Resonance Frequency ......................... 346
9.6.4. Calibration of 90° Phase Shift .............. 346
9.7. Future Prospects .................................... 348
References ................................................ 349
10. Kelvin Probe Force Microscopy: Recent Advances and
Applications
Yossi Rosenwaks, Oren Tal, Shimon Saraf, Alex
Schwarzman, Eli Lepkifker, Amir Boag ................... 351
10.1. Kelvin Probe Force Microscopy ....................... 351
10.2. Sensitivity and Spatial Resolution in KPFM .......... 354
10.2.1. Tip-Sample Electrostatic Interaction ........ 354
10.2.2. A Fast Algorithm for Calculating the
Electrostatic Force ........................ 356
10.2.3. Noise in KPFM Images ........................ 359
10.2.4. Deconvolution of KPFM Images ................ 360
10.3. Measurement of Semiconductor Surface States ......... 362
10.3.1. Surface Charge and Band Bending
Measurements ................................ 362
10.3.2. Measuring the Energy Distribution of the
Surface States .............................. 365
10.3.3. Organic Semiconductors: Bulk Density of
States ..................................... 368
References ................................................ 374
11. Application of Scanning Capacitance Microscopy
to Analysis at the Nanoscale
Štefan Lányi ........................................... 377
11.1. Introduction ........................................ 377
11.2. Capacitance Microscopes ............................. 379
11.2.1. Resolution of Capacitance Transducers ..... 382
11.2.2. Stray Capacitance of the Probe ............. 387
11.2.3. Sensitivity of the Probe ................... 392
11.2.4. SCM Operation Modes ........................ 399
11.3. Looking at the Invisible—Capacitance Contrast ....... 400
11.4. Semiconductor Analysis .............................. 401
11.5. Other Semiconductor Structures ...................... 405
11.6. Looking Deeper ...................................... 406
11.6.1. Impedance Spectroscopy ...................... 407
11.6.2. Deep Level Transient Spectroscopy ........... 408
11.7. Optimising the Experimental Conditions .............. 414
11.8. Conclusions ......................................... 416
References ................................................ 417
12. Probing Electrical Transport Properties at the
Nanoscale by Current-Sensing Atomic Force Microscopy
Laura Fumagalli, Ignacio Casuso, Giorgio Ferrari,
Gabriel Gomila ......................................... 421
12.1. Introduction ........................................ 421
12.2. Fundamentals of Electrical Transport Properties:
Resistance, Impedance and Noise ..................... 424
12.3. Experimental Setups for CS-AFM ...................... 429
12.3.1. Conductive Probes ........................... 429
12.3.2. Operating Modes of AFM ...................... 431
12.3.3. Current Detection Instrumentation ........... 432
12.4. Conductive Atomic Force Microscopy .................. 434
12.5. Nanoscale Impedance Microscopy ...................... 437
12.6. Electrical Noise Microscopy ......................... 443
12.7. Conclusions ......................................... 445
References ................................................ 446
Subject Index ................................................. 451
|