Applied scanning probe methods VIII: scanning probe microscopy techniques (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаApplied scanning probe methods VIII: scanning probe microscopy techniques / ed. by Bhushan B., Fuchs H., Tomitori M. - Berlin; Heidelberg: Springer, 2008. - lix, 465 p.: ill. (some col.). - (Nanoscience and technology). - Incl. bibl. ref. - Sub. ind.: p.451-465. - ISBN 3-540-74079-7; ISSN 1434-4904
 

Оглавление / Contents
 
1.  Background-Free Apertureless Near-Field Optical Imaging
       Pietro Giuseppe Gucciardi, Guillaume Bachelier,
       Stephan J. Stranick, Maria Allegrini ..................... 1

    1.1.  Introduction .......................................... 1
    1.2.  Principles of Apertureless SNOM ....................... 3
          1.2.1.  The Homodyne Apertureless SNOM Concept ........ 5
          1.2.2.  The Heterodyne and Pseudo-Heterodyne
                  Apertureless SNOM Concepts .................... 8
    1.3.  Interpretation of the Measured Near-Field Signal
          in the Presence of a Background ....................... 9
          1.3.1.  Noninterferometric Detection .................. 9
          1.3.2.  Interferometric Detection .................... 12
          1.3.3.  Artifacts in Apertureless SNOM and
                  Identification Criteria ...................... 14
          1.3.4.  New Techniques for Background Removal ........ 17
    1.4.  Applications of Elastic-Scattering
          Apertureless SNOM .................................... 17
          1.4.1.  Material-Specific Imaging .................... 18
          1.4.2.  Phase Mapping in Metallic Nanostructures
                  and Optical Waveguides ....................... 19
          1.4.3.  Tip-Induced Resonances in
                  Polaritonic Samples .......................... 22
          1.4.4.  Applications to Identification of
                  Biosamples ................................... 24
          1.4.5.  Subsurface Imaging and Superlensing .......... 25
    1.5.  Conclusions .......................................... 27
    References ................................................. 27

2.  Critical Dimension Atomic Force Microscopy for
    Sub-50-nm Microelectronics Technology Nodes
       Hao-Chih Liu, Gregory A. Dahlen, Jason R. Osborne ....... 31

    2.1.  Introduction ......................................... 32
          2.1.1.  AFM for Semiconductor and Data Storage
                  Industries ................................... 32
          2.1.2.  Scanning Modes: Tapping Versus Deep Trench
                  and CD Mode .................................. 32
          2.1.3.  Specialty Probes ............................. 34
    2.2.  Reference Metrology System and Semiconductor
          Production ........................................... 34
          2.2.1.  Requirements for Metrology Tools ............. 37
          2.2.2.  AFM as a Reference Metrology System .......... 37
          2.2.3.  AFM as an In-Line Metrology System ........... 39
    2.3.  Image Analysis for Accurate Metrology ................ 40
          2.3.1.  Background ................................... 40
          2.3.2.  Conventional Tip Characterization and
                  Image Reconstruction ......................... 41
          2.3.3.  CD Tip Shape Parameters ...................... 44
          2.3.4.  CD Tip Shape Characterization Techniques ..... 44
          2.3.5.  CD Image (Reentrant) Reconstruction
                  Algorithms ................................... 47
    2.4.  Metrology Applications ............................... 52
          2.4.1.  Examples within Process Control .............. 52
          2.4.2.  "Fingerprinting" of Sample Features .......... 54
    2.5.  Developments in Probe Fabrication .................... 60
          2.5.1.  Tip-Sample Interactions: Tip Shape,
                  Stiffness, and Tip Wear ...................... 61
          2.5.2.  Tip Wear and Surface Modification ............ 64
          2.5.3.  Application-Oriented Probe Designs ........... 67
    2.6.  Outlook: CD AFM Technologies for 45-/32-/22-nm
          Nodes ................................................ 70
          2.6.1.  Measuring Sub-50-nm Devices: System
                  Requirements ................................. 70
          2.6.2.  Probe Technology for 45-/32-nm Structures .... 71
    References ................................................. 73

3.  Near Field Probes: From Optical Fibers to Optical
    Nanoantennas
       Eugenio Cefalì, Salvatore Patanè, Salvatore Spadaro,
       Renato Gardelli, Matteo Albani, Maria Allegrini ......... 77

    3.1.  Introduction ......................................... 77
    3.2.  Conventional Microscopy and Near-Field
          Optical Techniques ................................... 78
    3.3.  The Probe ............................................ 84
          3.3.1.  Aperture SNOM Probes ......................... 85
          3.3.2.  The Apertureless Probe: Optical
                  Nanoantennas ................................ 118
    3.4.  Applications and Perspectives ....................... 127
    References ................................................ 129

4.  Carbon Nanotubes as SPM Tips: Mechanical Properties
    of Nanotube Tips and Imaging
       Sophie Marsaudon, Charlotte Bernard, Dirk Dietzel,
       Cattien V. Nguyen, Anne-Marie Bonnot, Jean-Pierre
       Aimé, Rudolphe Boisgard ................................ 137

    4.1.  Introduction ........................................ 138
    4.2.  CNT Tip Fabrication ................................. 140
          4.2.1.  MWCNTs and Fusing ........................... 141
          4.2.2.  SWCNTs and Direct Growth .................... 144
          4.2.3.  Controlling and Tailoring the Properties
                  of CNT Tips ................................. 148
    4.3.  Understanding the Mechanical Properties of CNT
          Tips: A Dynamical SPM Frequency Modulation Study .... 149
          4.3.1.  Mechanical Properties of CNTs ............... 149
          4.3.2.  Mechanical Properties of CNT Tips ........... 150
          4.3.3.  Mechanical Properties of CNT Tips in
                  Dynamical Experiments: Competition Between
                  Elasticity and Adhesion ..................... 151
          4.3.4.  Experimental Signals ........................ 155
          4.3.5.  Mechanical Properties of MWCNTs ............. 158
          4.3.6.  Mechanical Properties of SWCNTs:
                  Main Adhesive Contribution .................. 163
          4.3.7.  Comparison of Mechanical Properties
                  of CNTs ..................................... 166
          4.3.8.  Special cases ............................... 170
    4.4.  Imaging ............................................. 174
          4.4.1.  Literature Tour ............................. 174
          4.4.2.  Using the Mechanical Properties of CNTs
                  for Imaging ................................. 174
    4.5.  Conclusion .......................................... 176
    References ................................................ 178

5.  Scanning Probes for the Life Sciences
       Andrea M. Ho, Horacio D. Espinosa ...................... 183

    5.1.  Introduction ........................................ 183
    5.2.  Microarray Technology ............................... 184
          5.2.1.  Microcontact Printing ....................... 185
          5.2.2.  Optical Lithography ......................... 186
          5.2.3.  Protein Arrays .............................. 188
    5.3.  Nanoarray Technology ................................ 189
          5.3.1.  The Push for Nanoscale Detection ............ 189
          5.3.2.  Probe-Based Patterning ...................... 191
          5.3.3.  Alternative Patterning Methods .............. 202
    5.4.  Nanoscale Deposition Mechanisms ..................... 204
    5.5.  AFM Parallelization ................................. 207
          5.5.1.  One-Dimensional Arrays ...................... 208
          5.5.2.  Two-Dimensional Arrays ...................... 209
    5.6.  Future Prospects for Nanoprobes ..................... 212
    References ................................................ 214

6.  Self-Sensing Cantilever Sensor for Bioscience
       Hayato Sone, Sumio Hosaka .............................. 219

    6.1.  Introduction ........................................ 219
    6.2.  Basics of the Cantilever Mass Sensor ................ 220
    6.3.  Finite Element Method Simulation of the
          Cantilever Vibration ................................ 223
    6.4.  Detection of Cantilever Deflection .................. 226
          6.4.1.  Using a Position Sensor ..................... 226
          6.4.2.  Using a Piezoresistive Sensor ............... 227
    6.5.  Self-Sensing Systems ................................ 232
          6.5.1.  Vibration Systems ........................... 232
          6.5.2.  Vibration-Frequency Detection Systems ....... 232
    6.6.  Applications ........................................ 233
          6.6.1.  Water Molecule Detection in Air ............. 233
          6.6.2.  Antigen and Antibody Detection in Water ..... 238
    6.7.  Prospective Applications ............................ 244
    References ................................................ 244

7.  AFM Sensors in Scanning Electron and Ion Microscopes:
    Tools for Nanomechanics, Nanoanalytics, and
    Nanofabrication
       Vinzenz Friedli, Samuel Hoffmann, Johann Michler,
       Ivo Utke ............................................... 247

    7.1.  Introduction  248
    7.2.  Description of Standalone Techniques ................ 250
          7.2.1.  FEB/FIB Nanofabrication ..................... 250
          7.2.2.  Cantilever as a Static Force Sensor ......... 255
          7.2.3.  Cantilever as a Resonating Mass Sensor ...... 255
          7.2.4.  Nanomanipulation ............................ 256
    7.3.  Fundamentals of Cantilever-Based Sensors ............ 257
          7.3.1.  Static Operation—Force Sensors .............. 257
          7.3.2.  Dynamic Operation—Mass Sensors .............. 258
          7.3.3.  Sensor Scaling .............................. 263
          7.3.4.  Cantilever Calibration ...................... 264
          7.3.5.  Temperature Stability ....................... 265
          7.3.6.  Piezoresistive Detection .................... 267
    7.4.  Analytics at the Nanoscale .......................... 268
          7.4.1.  Nanomechanics ............................... 268
          7.4.2.  Cantilever-Based Gravimetry ................. 276
          7.4.3.  Atomic Force Microscopy in a SEM ............ 282
    7.5.  Perspectives and Outlook ............................ 283
    References ................................................ 284

8.  Cantilever Spring-Constant Calibration in Atomic Force
    Microscopy
       Peter J. Cumpson, Charles A. Clifford, Jose F.
       Portoles, James E. Johnstone, Martin Munz .............. 289

    8.1.  Introduction ........................................ 289
    8.2.  Applications of AFM ................................. 291
    8.3.  Force Measurements and Spring-Constant
          Calibration ......................................... 292
          8.3.1.  Theoretical Methods ......................... 292
          8.3.2.  V-Shaped Cantilevers and the Parallel-Beam
                  Approximation ............................... 293
          8.3.3.  Dynamic Experimental Methods ................ 295
          8.3.4.  Thermal Methods ............................. 297
    8.4.  Repeatability in AFM Force Measurements ............. 299
          8.4.1.  z-Axis Displacement Repeatability ........... 300
          8.4.2.  Cantilever Deflection Repeatability ......... 300
    8.5.  Microfabricated Devices for AFM Force Calibration ... 302
    8.6.  Lateral Force Calibration ........................... 308
    References ................................................ 312

9.  Frequency Modulation Atomic Force Microscopy in Liquids
       Suzanne P. Jarvis, John E. Sader, Takeshi Fukuma ....... 315

    9.1.  Introduction ........................................ 315
    9.2.  Instrumentation ..................................... 318
          9.2.1.  Basic Setup for FM-AFM ...................... 318
          9.2.2.  Cantilever Excitation in a Liquid ........... 319
          9.2.3.  Cantilever-Deflection Detection ............. 320
    9.3.  Applications ........................................ 326
          9.3.1.  Nonbiological Systems ....................... 326
          9.3.2.  Biological Systems .......................... 327
    9.4.  Theoretical Framework for Quantitative FM-AFM
          Force Measurements .................................. 332
          9.4.1.  Decomposition of Interaction Force .......... 332
          9.4.2.  Governing Equations ......................... 335
          9.4.3.  Fundamental Conditions on
                  Interaction Force ........................... 336
          9.4.4.  Determination of Forces ..................... 337
          9.4.5.  Validation of Formulas ...................... 339
    9.5.  Operation in a Fluid ................................ 340
          9.5.1.  Governing Equations and Resonance
                  Frequency in a Fluid ........................ 340
          9.5.2.  Validation of FM-AFM Force Measurements
                  in a Liquid ................................. 342
    9.6.  Phase Detuning in FM-AFM ............................ 343
          9.6.1.  Governing Equations for Arbitrary Phase
                  Shift ....................................... 344
          9.6.2.  Coupling of Conservative and Dissipative
                  Forces ...................................... 345
          9.6.3.  Operation of FM-AFM Away From the
                  Resonance Frequency ......................... 346
          9.6.4.  Calibration of 90° Phase Shift .............. 346
    9.7.  Future Prospects .................................... 348
    References ................................................ 349

10. Kelvin Probe Force Microscopy: Recent Advances and
    Applications
       Yossi Rosenwaks, Oren Tal, Shimon Saraf, Alex
       Schwarzman, Eli Lepkifker, Amir Boag ................... 351

    10.1. Kelvin Probe Force Microscopy ....................... 351
    10.2. Sensitivity and Spatial Resolution in KPFM .......... 354
          10.2.1. Tip-Sample Electrostatic Interaction ........ 354
          10.2.2. A Fast Algorithm for Calculating the
                   Electrostatic Force ........................ 356
          10.2.3. Noise in KPFM Images ........................ 359
          10.2.4. Deconvolution of KPFM Images ................ 360
    10.3. Measurement of Semiconductor Surface States ......... 362
          10.3.1. Surface Charge and Band Bending
                  Measurements ................................ 362
          10.3.2. Measuring the Energy Distribution of the
                  Surface States .............................. 365
          10.3.3. Organic Semiconductors: Bulk Density of
                   States ..................................... 368
    References ................................................ 374

11. Application of Scanning Capacitance Microscopy
    to Analysis at the Nanoscale
       Štefan Lányi ........................................... 377

    11.1. Introduction ........................................ 377
    11.2. Capacitance Microscopes ............................. 379
           11.2.1.  Resolution of Capacitance Transducers ..... 382
           11.2.2. Stray Capacitance of the Probe ............. 387
           11.2.3. Sensitivity of the Probe ................... 392
           11.2.4. SCM Operation Modes ........................ 399
    11.3. Looking at the Invisible—Capacitance Contrast ....... 400
    11.4. Semiconductor Analysis .............................. 401
    11.5. Other Semiconductor Structures ...................... 405
    11.6. Looking Deeper ...................................... 406
          11.6.1. Impedance Spectroscopy ...................... 407
          11.6.2. Deep Level Transient Spectroscopy ........... 408
    11.7. Optimising the Experimental Conditions .............. 414
    11.8. Conclusions ......................................... 416
    References ................................................ 417

12. Probing Electrical Transport Properties at the
    Nanoscale by Current-Sensing Atomic Force Microscopy
       Laura Fumagalli, Ignacio Casuso, Giorgio Ferrari,
       Gabriel Gomila ......................................... 421

    12.1. Introduction ........................................ 421
    12.2. Fundamentals of Electrical Transport Properties:
          Resistance, Impedance and Noise ..................... 424
    12.3. Experimental Setups for CS-AFM ...................... 429
          12.3.1. Conductive Probes ........................... 429
          12.3.2. Operating Modes of AFM ...................... 431
          12.3.3. Current Detection Instrumentation ........... 432
    12.4. Conductive Atomic Force Microscopy .................. 434
    12.5. Nanoscale Impedance Microscopy ...................... 437
    12.6. Electrical Noise Microscopy ......................... 443
    12.7. Conclusions ......................................... 445
    References ................................................ 446

Subject Index ................................................. 451


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:34 2019. Размер: 21,503 bytes.
Посещение N 2116 c 03.11.2009