Applied scanning probe methods V: scanning probe microscopy techniques (Berlin; Heidelberg, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаApplied scanning probe methods V: scanning probe microscopy techniques / ed. by Bhushan B., Fuchs H., Kawata S. - Berlin; Heidelberg: Springer, 2007. - xlv, 344 p.: ill. - (Nanoscience and technology). - Incl. bibl. ref. - Sub. ind.: p.331-344. - ISBN 3-540-37315-2; ISSN 1434-4904
 

Оглавление / Contents
 
1.  Integrated Cantilevers and Atomic Force Microscopes
       Sadik Hafizovic, Kay-Uwe Kirstein, Andreas Hierlemann .... 1

    1.1.  Overview .............................................. 1
    1.2.  Active Cantilevers .................................... 2
          1.2.1.  Integrated Force Sensor ....................... 4
          1.2.2.  Integrated Actuation .......................... 8
    1.3.  System Integration ................................... 10
          1.3.1.  Analog Signal Processing and Conditioning .... 10
          1.3.2.  Digital Signal Processing .................... 13
    1.4.  Single-Chip CMOS AFM ................................. 16
          1.4.1. Measurements .................................. 19
    1.5.  Parallel Scanning .................................... 19
    1.6.  Outlook .............................................. 21
    References ................................................. 21

2.  Electrostatic Microscanner
       Yasuhisa Ando ........................................... 23

    2.1.  Introduction ......................................... 23
    2.2.  Displacement Conversion Mechanism .................... 24
          2.2.1.  Basic Conception ............................. 24
          2.2.2.  Combination with Comb Actuator ............... 25
          2.2.3.  Various Types of Displacement Conversion
                  Mechanism .................................... 27
    2.3.  Design, Fabrication Technique, and Performance ....... 29
          2.3.1.  Main Structure of 3D Microstage .............. 29
          2.3.2.  Amplification Mechanism of Scanning Area ..... 31
          2.3.3.  Fabrication Using ICP-RIE .................... 34
          2.3.4.  Evaluation of Motion of 3D Microstage ........ 37
    2.4.  Applications to AFM .................................. 39
          2.4.1.  Operation by Using Commercial Controller ..... 39
          2.4.2.  Evaluation of Microscanner Using
                  Grating Image ................................ 41
          2.4.3.  SPM Operation Using Microscanner ............. 45
          References ........................................... 49

3.  Low-Noise Methods for Optical Measurements of
    Cantilever Deflections
       Tilman E. Schäffer ...................................... 51

    3.1.  Introduction ......................................... 51
    3.2.  The Optical Beam Deflection Method ................... 52
          3.2.1.  Gaussian Optics .............................. 52
          3.2.2.  Detection Sensitivity ........................ 54
    3.3.  Optical Detection Noise .............................. 55
          3.3.1.  Noise Sources ................................ 55
          3.3.2.  Shot Noise ................................... 55
    3.4.  The Array Detector ................................... 56
    3.5.  Dynamic Range and Linearity .......................... 59
          3.5.1.  The Two-Segment Detector ..................... 59
          3.5.2.  The Array Detector ........................... 61
    3.6.  Detection of Higher-Order Cantilever
          Vibration Modes ...................................... 62
          3.6.1.  Normal Vibration Modes ....................... 63
          3.6.2.  Optimization of the Detection Sensitivity .... 64
    3.7.  Calculation of Thermal Vibration Noise ............... 66
          3.7.1.  Focused Optical Spot of Infinitesimal Size ... 66
          3.7.2.  Focused Optical Spot of Finite Size .......... 67
    3.8.  Thermal Spring Constant Calibration .................. 69
    References ................................................. 70

4.  Q-controlled Dynamic Force Microscopy in Air and Liquids
       Hendrik Hölscher, Daniel Ebeling, Udo D. Schwarz ........ 75

    4.1.  Introduction ......................................... 75
    4.2.  Theory of Q-controlled Dynamic Force Microscopy ...... 76
          4.2.1.  Equation of Motion of a Dynamic Force
                  Microscope with Q-control .................... 76
          4.2.2.  Active Modification of the Q-factor .......... 78
          4.2.3.  Including Tip-Sample Interactions ............ 80
          4.2.4.  Prevention of Instabilities by Q-control
                  in Air ....................................... 82
          4.2.5.  Reduction of Tip-Sample Indentation and
                  Force by Q-control in Liquids ................ 86
    4.3.  Experimental Applications of Q-control ............... 89
          4.3.1.  Examples for Q-control Applications
                  in Ambient Conditions ........................ 90
    4.4.  Summary .............................................. 94
    References ................................................. 95

5.  High-Frequency Dynamic Force Microscopy
       Hideki Kawakatsu ........................................ 99

    5.1.  Introduction ......................................... 99
    5.2.  Instrumental ......................................... 99
          5.2.1.  Cantilever ................................... 99
          5.2.2.  Detection ................................... 102
          5.2.3.  Excitation .................................. 105
          5.2.4.  Circuitry ................................... 106
    5.3.  Experimental ........................................ 107
          5.3.1.  Low-Amplitude Operation ..................... 107
          5.3.2.  Manipulation ................................ 108
          5.3.3.  Atomic-Resolution Lateral
                  Force Microscopy ............................ 108
          5.3.4.  Other Techniques for High Frequency
                  Motion Detection ............................ 108
    5.4.  Summary and Outlook ................................. 109
    References ................................................ 110

6.  Torsional Resonance Microscopy and Its Applications
       Chanmin Su, Lin Huang, Craig B. Prater,
       Bharat Bhushan ......................................... 113

    6.1.  Introduction to Torsional Resonance Microscopy ...... 113
    6.2.  TRmode System Configuration ......................... 115
    6.3.  Torsional Modes of Oscillation ...................... 119
    6.4.  Imaging and Measurements with TRmode ................ 123
          6.4.1.  TRmode in Weakly-Coupled Interaction
                  Region ...................................... 123
          6.4.2.  TRmode Imaging and Measurement in
                  Contact Mode ................................ 127
    6.5.  Applications of TRmode Imaging ...................... 129
          6.5.1.  High-Resolution Imaging Application ......... 129
          6.5.2.  Electric Measurements Under Controlled
                  Proximity by TRmode ......................... 132
          6.5.3.  In-Plane Anisotropy ......................... 138
    6.6.  Torsional Tapping Harmonics for Mechanical
          Property Characterization ........................... 140
          6.6.1.  Detecting Cantilever Harmonics Through
                  Torsional Detection ......................... 142
          6.6.2.  Reconstruction of Time-Resolved Forces ...... 142
          6.6.3.  Force-Versus-Distance Curves ................ 143
          6.6.4.  Mechanical Property Measurements and
                  Compositional Mapping ....................... 144
    6.7.  Conclusion .......................................... 145
    References ................................................ 146

7.  Modeling of Tip-Cantilever Dynamics in Atomic
    Force Microscopy
       Yaxin Song, Bharat Bhushan ............................. 149

    7.1.  Introduction ........................................ 155
          7.1.1.  Various AFM Modes and Measurement
                  Techniques .................................. 155
          7.1.2.  Models for AFM Cantilevers .................. 161
          7.1.3.  Outline ..................................... 163
    7.2.  Modeling of AFM Tip-Cantilever Systems in AFM ....... 163
          7.2.1.  Tip-Sample Interaction ...................... 164
          7.2.2.  Point-Mass Model ............................ 166
          7.2.3.  The ID Beam Model ........................... 168
          7.2.4.  Pure Torsional Analysis of TRmode ........... 171
          7.2.5.  Coupled Torsional-Bending Analysis .......... 177
    7.3.  Finite Element Modeling of Tip-Cantilever
          Systems ............................................. 187
          7.3.1.  Finite Element Beam Model of Tip-
                  Cantilever Systems .......................... 188
          7.3.2.  Modeling of Tapping Mode .................... 192
          7.3.3.  Modeling of Torsional Resonance Mode ........ 196
          7.3.4.  Modeling of Lateral Excitation Mode ......... 199
    7.4.  Atomic-Scale Topographic and Friction Force
          Imaging in FFM ...................................... 200
          7.4.1.  FFM Images of Graphite Surface .............. 202
          7.4.2.  Interatomic Forces Between Tip
                  and Surface ................................. 204
          7.4.3.  Modeling of FFM Profiling Process ........... 205
          7.4.4.  Simulations on Graphite Surface ............. 208
    7.5.  Quantitative Evaluation of the Sample's Mechanical
          Properties .......................................... 213
    7.6.  Closure ............................................. 216
    A.    Appendices .......................................... 217
          A.l.    Stiffness and Mass Matrices of 3D
                  Beam Element ................................ 217
          A.2.    Mass Matrix of the Tip ...................... 218
          A.3.    Additional Stiffness and Mass Matrices
                  Under Linear Tip-Sample Interaction ......... 219
    References ................................................ 220

8.  Combined Scanning Probe Techniques for In-Situ
    Electrochemical Imaging at a Nanoscale
       Justyna Wiedemair, Boris Mizaikoff, Christine Kranz .... 225

    8.1.  Overview ............................................ 227
    8.2.  Combined Techniques ................................. 228
          8.2.1.  Integration of Electrochemical
                  Functionality ............................... 230
          8.2.2.  Combined Techniques Based on Force
                  Interaction ................................. 231
          8.2.3.  Combined Techniques, Based on Tunneling
                  Current ..................................... 232
          8.2.4.  Combined Techniques Based on Optical
                  Near-Field Interaction ...................... 233
          8.2.5.  Theory ...................................... 234
          8.2.6.  Combined Probe Fabrication .................. 234
    8.3.  Applications ........................................ 243
          8.3.1.  Model Systems ............................... 244
          8.3.2.  Imaging Enzyme Activity ..................... 246
          8.3.3.  AFM Tip-Integrated Biosensors ............... 249
          8.3.4.  Combined SPM for Imaging of Living Cells .... 253
          8.3.5.  Measurement of Local pH Changes ............. 255
          8.3.6.  Corrosion Studies ........................... 257
    8.4.  Outlook: Further Aspects of Multifunctional
          Scanning Probes ..................................... 259
    References ................................................ 261

9.  New AFM Developments to Study Elasticity
    and Adhesion at the Nanoscale
       Robert Szoszkiewicz, Elisa Riedo ....................... 269

    9.1.  Introduction ........................................ 270
    9.2.  Contact Mechanics Theories and Their Limitations .... 271
    9.3.  Modulated Nanoindentation ........................... 273
          9.3.1.  Force-Indentation Curves .................... 273
          9.3.2.  Elastic Moduli .............................. 276
    9.4.  Ultrasonic Methods at Local Scales .................. 278
          9.4.1.  Brief Description of Ultrasonic Methods ..... 278
          9.4.2.  Applications of Ultrasonic Techniques in
                  Elasticity Mapping .......................... 281
          9.4.3.  UFM Measurements of Adhesion Hysteresis
                  and Their Relations to Friction at the
                  Tip-Sample Contact .......................... 282
    References ................................................ 284

10. Near-Field Raman Spectroscopy and Imaging
       Pietro Giuseppe Gucciardi, Sebastiano Trusso,
       Cirino Vasi, Salvatore Patane, Maria Allegrini ......... 287
    
    10.1. Introduction ........................................ 287
    10.2. Raman Spectroscopy .................................. 289
          10.2.1. Classical Description of the Raman Effect ... 289
          10.2.2. Quantum Description of the Raman Effect ..... 291
          10.2.3. Coherent Anti-Stokes Raman Scattering ....... 295
          10.2.4. Experimental Techniques in
                  Raman Spectroscopy .......................... 296
    10.3. Near-Field Raman Spectroscopy ....................... 299
          10.3.1. Theoretical Principles of the Near-Field
                  Optical Microscopy .......................... 300
          10.3.2. Setups for Near-Field Raman Spectroscopy .... 302
    10.4. Applications of Near-Field Raman Spectroscopy ....... 306
          10.4.1. Structural Mapping .......................... 307
          10.4.2. Chemical Mapping ............................ 312
          10.4.3. Probing Single Molecules by Surface-
                  Enhanced and Tip-Enhanced Near-Field
                  Raman Spectroscopy .......................... 314
          10.4.4. Near-Field Raman Spectroscopy and Imaging
                  of Carbon Nanotubes ......................... 321
          10.4.5. Coherent Anti-Stokes Near-Field
                  Raman Imaging ............................... 324
    10.5. Conclusions ......................................... 326
    References ................................................ 326

Subject Index ................................................. 331


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:34 2019. Размер: 18,349 bytes.
Посещение N 1953 c 03.11.2009