Springer series in solid-state sciences; 157 (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSpin physics in semiconductors / ed. by Dyakonov M.I. - Berlin; Heidelberg: Springer, 2008. - xviii, 439 p.: ill. - (Springer series in solid-state sciences; 157). - Incl. bibl. ref. - Ind.: p.433-439. - ISBN 978-3-540-78819-5
 

Оглавление / Contents
 
Preface	 ...................................................... vii
List of Contributors ......................................... xvii

1  Basics of Semiconductor and Spin Physics ..................... 1
   M.I. Dyakonov ................................................ 1
   1.1  Historical Background ................................... 1
   1.2  Spin Interactions ....................................... 2
        1.2.1  The Pauli Principle .............................. 2
        1.2.2  Exchange Interaction ............................. 3
        1.2.3  Spin-Orbit Interaction ........................... 3
        1.2.4  Hyperfine Interaction with Nuclear Spins ......... 4
        1.2.5  Magnetic Interaction ............................. 5
   1.3  Basics of Semiconductor Physics ......................... 5
        1.3.1  Electron Energy Spectrum in a Crystal ............ 5
        1.3.2  Effective Masses of Electrons and Holes .......... 5
        1.3.3  The Effective Mass Approximation ................. 6
        1.3.4  Role of Impurities ............................... 7
        1.3.5  Excitons ......................................... 8
        1.3.6  The Structure of the Valence Band. Light and
               Heavy Holes ...................................... 8
        1.3.7  Band Structure of GaAs .......................... 11
        1.3.8  Photo-generation of Carriers and Luminescence ... 11
        1.3.9  Angular Momentum Conservation in Optical
               Transitions ..................................... 12
        1.3.10 Low Dimensional Semiconductor Structures ........ 13
   1.4  Overview of Spin Physics in Semiconductors ............. 15
        1.4.1  Optical Spin Orientation and Detection .......... 15
        1.4.2  Spin Relaxation ................................. 16
        1.4.3  Hanle Effect .................................... 21
        1.4.4  Mutual Transformations of Spin and Charge
               Currents ........................................ 22
        1.4.5  Interaction between the Electron and Nuclear
               Spin Systems .................................... 23
   1.5  Overview of the Book Content ........................... 25
   References .................................................. 26
2  Spin Dynamics of Free Carriers in Quantum Wells ............. 29
   R.T. Harley ................................................. 29
   2.1  Introduction ........................................... 29
   2.2  Optical Measurements of Spin Dynamics .................. 29
   2.3  Mechanisms of Spin Relaxation of Free Electrons ........ 32
   2.4  Electron Spin Relaxation in Bulk Semiconductors ........ 35
   2.5  Electron Spin Relaxation in [001]-Oriented Quantum
        Wells .................................................. 37
        2.5.1  Symmetrical [001]-Oriented Quantum Wells ........ 37
        2.5.2  Structural Inversion Asymmetry in [001]-
               Oriented Quantum Wells .......................... 40
        2.5.3  Natural Interface Asymmetry in Quantum Wells .... 42
        2.5.4  Oscillatory Spin-Dynamics in Two-dimensional
               Electron Gases .................................. 45
   2.6  Spin Dynamics of Free Holes in Bulk Material and
        Quantum Wells .......................................... 47
   2.7  Engineering and Controlling the Spin Dynamics in
        Quantum Wells .......................................... 49
   2.8  Conclusions ............................................ 51
   References .................................................. 52
3  Exciton Spin Dynamics in Semiconductor Quantum Wells ........ 55
   T. Amand and X. Marie ....................................... 55
   3.1  Two-dimensional Exciton Fine Structure ................. 55
        3.1.1  Short-Range Electron-Hole Exchange .............. 56
        3.1.2  Long-Range Electron-Hole Exchange ............... 57
   3.2  Optical Orientation of Exciton Spin in Quantum Wells ... 58
   3.3  Exciton Spin Dynamics in Quantum Wells ................. 60
        3.3.1  Exciton Formation in Quantum Wells .............. 60
        3.3.2  Spin Relaxation of Exciton-Bound Hole ........... 62
        3.3.3  Spin Relaxation of Exciton-Bound Electron ....... 65
        3.3.4  Exciton Spin Relaxation Mechanism ............... 66
   3.4  Exciton Exchange Energy and g-Factor in Quantum
        Wells .................................................. 72
        3.4.1  Exchange Interaction of Excitons and g-Factor
               Measured with cw Magneto-Photoluminescence
               Spectroscopy .................................... 73
        3.4.2  Exciton Spin Quantum Beats Spectroscopy ......... 76
   3.5  Exciton Spin Dynamics in Type II Quantum Wells ......... 81
   3.6  Spin Dynamics in Dense Excitonic Systems ............... 83
   References .................................................. 86
4  Exciton Spin Dynamics in Semiconductor Quantum Dots ......... 91
   X. Marie, B. Urbaszek, O. Krebs and T. Amand ................ 91
   4.1  Introduction ........................................... 91
   4.2  Electron-Hole Complexes in Quantum Dots ................ 92
        4.2.1  Coulomb Corrections to the Single Particle
               Picture ......................................... 93
        4.2.2  Fine Structure of Neutral Excitons .............. 93
   4.3  Exciton Spin Dynamics in Neutral Quantum Dots without
        Applied Magnetic Fields ................................ 95
        4.3.1  Exciton Spin Dynamics under Resonant
               Excitation ...................................... 95
        4.3.2  Exciton Spin Quantum Beats: The Role of
               Anisotropic Exchange ............................ 97
   4.4  Exciton Spin Dynamics in Neutral Quantum Dots in
        External Magnetic Fields ............................... 98
        4.4.1  Zeeman Effect Versus Anisotropic Exchange
               Splittings in Single Dot Spectroscopy ........... 98
        4.4.2  Exciton Spin Quantum Beats in Applied
               Magnetic Fields ................................ 100
   4.5  Charged Exciton Complexes: Spin Dynamics without
        Applied Magnetic Fields ............................... 101
        4.5.1  Formation of Trions: Doped and Charge
               Tuneable Structures ............................ 102
        4.5.2  Fine Structure and Polarization of X+ and X-
               Excitons ....................................... 103
        4.5.3  Spin Dynamics in Negatively Charged Exciton
               Complexes Xn- .................................. 104
        4.5.4  Spin Memory of Trapped Electrons ............... 106
   4.6  Charged Exciton Complexes: Spin Dynamics in Applied
        Magnetic Fields ....................................... 106
        4.6.1  Electron Spin Polarization in Positively
               Charged Excitons in Longitudinal Magnetic
               Fields ......................................... 107
        4.6.2  Electron Spin Coherence in Positively Charged
               Excitons in Transverse Magnetic Fields ......... 109
   4.7  Conclusions ........................................... 110
   References ................................................. 110
5  Time-Resolved Spin Dynamics and Spin Noise
   Spectroscopy ............................................... 115
   J. Hübner and M. Oestreich ................................. 115
   5.1  Introduction .......................................... 115
   5.2  Time- and Polarization-Resolved Photoluminescence ..... 116
        5.2.1  Experimental Technique ......................... 117
        5.2.2  Experimental Example I: Spin Relaxation in
               (110) Oriented Quantum Wells ................... 119
        5.2.3  Experimental Example II: Coherent Dynamics
               of Coupled Electron and Hole Spins in
               Semiconductors ................................. 122
        5.2.4  Photoluminescence and Spin-Optoelectronic
               Devices ........................................ 123
   5.3  Time-Resolved Faraday/Kerr Rotation ................... 123
        5.3.1  Experimental Set-Up ............................ 125
        5.3.2  Experimental Example: Spin Amplification ....... 127
   5.4  Spin Noise Spectroscopy ............................... 129
        5.4.1  Experimental Realization ....................... 129
   5.5  Spin Noise Measurements in n-GaAs ..................... 131
   5.6  Conclusions ........................................... 132
   References ................................................. 133
6  Coherent Spin Dynamics of Carriers ......................... 135
   D.R. Yakovlev and M. Bayer ................................. 135
   6.1  Introduction .......................................... 135
        6.1.1  Spin Coherence and Spin Dephasing Times ........ 136
        6.1.2  Optical Generation of Spin Coherent Carriers ... 137
        6.1.3  Experimental Technique ......................... 138
   6.2  Spin Coherence in Quantum Wells ....................... 140
        6.2.1  Electron Spin Coherence ........................ 141
        6.2.2  Hole Spin Coherence ............................ 151
   6.3  Spin Coherence in Singly Charged Quantum Dots ......... 153
        6.3.1  Exciton and Electron Spin Beats Probed by
               Faraday Rotation ............................... 155
        6.3.2  Generation of Electron Spin Coherence .......... 157
        6.3.3  Mode Locking of Spin Coherence in an Ensemble
               of Quantum Dots ................................ 160
        6.3.4  Nuclei Induced Frequency Focusing of Spin
               Coherence ...................................... 169
   6.4  Conclusions ........................................... 174
   References ................................................. 175
7  Spin Properties of Confined Electrons in Si ................ 179
   W. Jantsch and Z. Wilamowski ............................... 179
   7.1  Introduction .......................................... 179
   7.2  Spin-Orbit Effects in Si Quantum Wells ................ 182
        7.2.1  The Bychkov-Rashba Field ....................... 182
   7.3  Spin Relaxation of Conduction Electrons in Si/SiGe
        Quantum Wells ......................................... 186
        7.3.1  Mechanisms of Spin Relaxation of Conduction
               Electrons ...................................... 186
        7.3.2  Linewidth and the Longitudinal Relaxation
               Time of the Two-dimensional Electron Gas in
               Si/SiGe ........................................ 187
        7.3.3  Dephasing and Longitudinal Spin Relaxation ..... 191
        7.3.4  Comparison with Experiment ..................... 194
   7.4  Current Induced Spin-Orbit Field ...................... 195
   7.5  ESR Excited by an ac Current .......................... 197
        7.5.1  Electric Dipole vs. Magnetic Dipole Spin
               Excitation ..................................... 197
        7.5.2  The ESR Signal Strength in Two-dimensional
               Si/SiGe Structures—Experimental Results ........ 198
        7.5.3  Modeling the Current Induced Excitation and
               Detection of ESR ............................... 199
        7.5.4  Power Absorption, Line Shape ................... 201
   7.6  Spin Relaxation under Lateral Confinement ............. 201
        7.6.1  Shallow Donors ................................. 202
        7.6.2  From the Two-dimensional Electron Gas to
               Quantum Dots ................................... 204
        7.6.3  Spin Relaxation and Dephasing in Si Quantum
               Dots ........................................... 205
   7.7  Conclusions ........................................... 206
   References ................................................. 207
8  Spin Hall Effect ........................................... 211
   M.I. Dyakonov and A.V. Khaetskii ........................... 211
   8.1  Background: Magnetotransport in Molecular Gases ....... 211
   8.2  Phenomenology (with Inversion Symmetry) ............... 213
        8.2.1  Preliminaries .................................. 213
        8.2.2  Spin and Charge Current Coupling ............... 213
        8.2.3  Phenomenological Equations ..................... 214
        8.2.4  Physical Consequences of Spin-Charge
               Coupling ....................................... 215
        8.2.5  Related Problems ............................... 218
        8.2.6  Electrical Effects of Second Order in Spin-
               Orbit Interaction .............................. 219
   8.3  Phenomenology (without Inversion Symmetry) ............ 222
   8.4  Microscopic Mechanisms ................................ 223
        8.4.1  Spin Asymmetry in Electron Scattering .......... 223
        8.4.2  The Side Jump Mechanism ........................ 226
        8.4.3  Intrinsic Mechanism ............................ 231
   8.5  Experiments ........................................... 235
   8.6  Conclusion ............................................ 239
        Appendix A: The Generalized Kinetic Equation .......... 239
        References ............................................ 241

9  Spin-Photogalvanics ........................................ 245
   E.L. Ivchenko and S. Ganichev .............................. 245
   9.1  Introduction. Phenomenological Description ............ 245
   9.2  Circular Photogalvanic Effect ......................... 247
        9.2.1  Historical Background .......................... 247
        9.2.2  Basic Experiments .............................. 248
        9.2.3  Microscopic Model for Inter-Sub-Band
               Transitions .................................... 251
        9.2.4  Relation to A:-Linear Terms .................... 251
        9.2.5  Circular PGE Due to Inter-Sub-Band
               Transitions .................................... 251
        9.2.6  Interband Optical Transitions .................. 253
        9.2.7  Spin-Sensitive Bleaching ....................... 254
   9.3  Spin-Galvanic Effect .................................. 256
        9.3.1  Microscopic Mechanisms ......................... 257
        9.3.2  Spin-Galvanic Photocurrent Induced by the
               Hanle Effect ................................... 259
        9.3.3  Spin-Galvanic Effect at Zero Magnetic Field .... 261
        9.3.4  Determination of the Rashba/Dresselhaus Spin
               Splitting Ratio ................................ 262
   9.4  Inverse Spin-Galvanic Effect .......................... 263
        9.4.1  Spin-Flip Mediated Current-Induced
               Polarization ................................... 264
        9.4.2  Precessional Mechanism ......................... 265
        9.4.3  Current Induced Spin Faraday Rotation .......... 266
        9.4.4  Current Induced Polarization of
               Photoluminescence .............................. 267
   9.5  Pure Spin Currents .................................... 268
        9.5.1  Pure Spin Current Injected by a Linearly
               Polarized Beam ................................. 269
        9.5.2  Pure Spin Currents Due to Spin-Dependent
               Scattering ..................................... 271
   9.6   Concluding Remarks ................................... 274
   References ................................................. 274
10 Spin Injection ............................................. 279
   M. Johnson ................................................. 279
   10.1 Introduction .......................................... 279
        10.1.1 History ........................................ 279
   10.2 Theoretical Models of Spin Injection and Spin
        Accumulation .......................................... 281
        10.2.1 Heuristic Introduction ......................... 281
        10.2.2 Microscopic Transport Model .................... 285
        10.2.3 Thermodynamic Theory of Spin Transport ......... 286
        10.2.4 Hanle Effect ................................... 292
   10.3 Spin Injection Experiments in Metals .................. 292
   10.4 Spin Injection in Semiconductors ...................... 295
        10.4.1 Optical Experiments ............................ 297
        10.4.2 Transport Experiments .......................... 301
   10.5 Related Topics ........................................ 305
   References ................................................. 306
11 Dynamic Nuclear Polarization and Nuclear Fields ............ 309
   V.K. Kalevich, K.V. Kavokin and L.A. Merkulov .............. 309
   11.1 Electron-Nuclear Spin System of the Semiconductor:
        Characteristic Values of Effective Fields and Spin
        Precession Frequencies ................................ 310
        11.1.1 Zeeman Splitting of Spin Levels ................ 310
        11.1.2 Quadrupole Interaction ......................... 311
        11.1.3 Hyperfine Interaction .......................... 311
        11.1.4 Nuclear Dipole-Dipole Interaction .............. 313
   11.2 Electron Spin Relaxation by Nuclei: from Short to
        Long Correlation Time ................................. 314
   11.3 Dynamic Polarization of Nuclear Spins ................. 316
        11.3.1 Electron Spin Splitting in the Overhauser
               Field .......................................... 317
        11.3.2 Stationary States of the Electron-Nuclear
               Spin System in Faraday Geometry ................ 319
        11.3.3 Dynamic Polarization by Localized Electrons .... 320
        11.3.4 Cooling of the Nuclear Spin System ............. 322
        11.3.5 Polarization of Nuclei by Excitons in Neutral
               Quantum Dots ................................... 324
        11.3.6 Current-Induced Dynamic Polarization in
               Tunnel-Coupled Quantum Dots .................... 325
        11.3.7 Self-Polarization of Nuclear Spins ............. 325
   11.4 Dynamic Nuclear Polarization in Oblique Magnetic
        Field ................................................. 326
        11.4.1 Larmor Electron Spin Precession ................ 327
        11.4.2 Polarization of Electron-Nuclear Spin-System
               in an Oblique Magnetic Field ................... 329
        11.4.3 Bistability of the Electron-Nuclear Spin
               System in Structures with Anisotropic
               Electron g-Factor and Spin Relaxation Time ..... 331
   11.5 Optically Detected and Optically Induced Nuclear
        Magnetic Resonances ................................... 333
        11.5.1 Optically Detected Nuclear Magnetic
               Resonance ...................................... 333
        11.5.2 Multispin and Multiquantum NMR ................. 333
        11.5.3 Optically Induced NMR .......................... 335
   11.6 Spin Conservation in the Electron-Nuclear Spin
        System of a Quantum Dot ............................... 337
        11.6.1 Time Scales for Preservation of Spin
               Direction and Spin Temperature ................. 337
        11.6.2 A Guide to Interpretation of Experiments on
               "Spin Memory" .................................. 338
   11.7 Conclusions ........................................... 342
   References ................................................. 343
12 Nuclear-Electron Spin Interactions in the Quantum Hall
   Regime ..................................................... 347
   Y.Q. Li and J.H. Smet ...................................... 347
   12.1 Introduction .......................................... 348
        12.1.1 The Quantum Hall Effects in a Nutshell ......... 348
        12.1.2 Electron Spin Phenomena in the Quantum Hall
               Effects ........................................ 353
        12.1.3 Nuclear Spins in GaAs-Based 2D Electron
               Systems ........................................ 356
   12.2 Experimental Techniques ............................... 360
   12.3 Nuclear Spin Phenomena in the Quantum Hall Regime ..... 362
        12.3.1 The Role of Disorder ........................... 362
        12.3.2 Edge Channel Scattering ........................ 364
        12.3.3 Skyrmions ...................................... 367
        12.3.4 Nuclear-Electron Spin Interactions at
               v = 2/3 ........................................ 369
        12.3.5 Resistively Detected NMR at v = 2/3 ............ 371
        12.3.6 Composite Fermion Fermi Sea at v = 1/2 ......... 379
        12.3.7 Other Cases .................................... 382
   12.4 Summary and Outlook ................................... 384
   References ................................................. 384
13 Diluted Magnetic Semiconductors: Basic Physics and
   Optical Properties ......................................... 389
   J. Cibert and D. Scalbert .................................. 389
   13.1 Introduction .......................................... 389
   13.2 Band Structure of II-VI and III-V DMS ................. 390
   13.3 Exchange Interactions in DMS .......................... 392
        13.3.1 s, p-d Exchange Interaction .................... 392
        13.3.2 d-d Exchange Interactions ...................... 394
   13.4 Magnetic Properties ................................... 396
        13.4.1 UndopedDMS ..................................... 396
        13.4.2 Carrier-Induced Ferromagnetism ................. 399
   13.5 Basic Optical Properties .............................. 402
        13.5.1 Giant Zeeman Effect ............................ 402
        13.5.2 Optically Detected Ferromagnetism in II-VI
               DMS ............................................ 408
        13.5.3 Quantum Dots ................................... 410
        13.5.4 Spin-Light Emitting Diodes ..................... 412
        13.5.5 III-V Diluted Magnetic Semiconductors .......... 412
   13.6 Spin Dynamics ......................................... 414
        13.6.1 Electron Spin Relaxation Induced by s-d
               Exchange ....................................... 415
        13.6.2 Mn Spin Relaxation ............................. 415
        13.6.3 Collective Spin Excitations in CdMnTe
               Quantum Wells .................................. 419
   13.7 Advanced Time-Resolved Optical Experiments ............ 422
        13.7.1 Carrier Spin Dynamics .......................... 423
        13.7.2 Magnetization Dynamics ......................... 424
        References ............................................ 427

Index ......................................................... 433


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:32 2019. Размер: 26,926 bytes.
Посещение N 2450 c 27.10.2009